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1. Introduction 

Culture media are essential for cultivating and 

maintaining microorganisms under laboratory conditions, but 

commercially available synthetic media such as Nutrient Agar, 

Cetrimide Agar, and MacConkey Agar are often costly. To 

reduce expenses, alternative media using locally available 

plant materials have been explored. Uthayasooriyan et al. [1] 

suggested cereals and legumes as nutrient sources for 

microbial culture, while fruits and vegetables have also been 

used successfully due to their rich content of amino acids, 

vitamins, and minerals [2]. For example, [3] demonstrated that 

rhizospheric microorganisms grew effectively on agar plates 

prepared with crude juice of Mesembryanthemum 

crystallinum. Plant-based extracts such as M. viridis and 

O.ficus-indica are promising alternatives. Peppermint leaves 

contain carbohydrates, proteins, and essential minerals that 

support microbial growth [4], while prickly pear cladodes are 

rich in sugars, amino acids, vitamins, and minerals, making 

them suitable for microbial cultivation [5, 6]. 

Plant-based media offer a useful platform for isolating plant 

growth-promoting rhizobacteria (PGPR). These beneficial 

microbes contribute to plant development through multiple 

mechanisms, including phosphate solubilization, 

phytohormone production, and the induction of systemic 

resistance [7, 8]. Among PGPR, Bacillus safensis has been 

recognized for its salt tolerance, phytohormone production, 

and root colonization ability [9-11]. Likewise, actinomycetes 
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such as Streptomyces afghaniensis are known for producing 

phytohormones, antibiotics, and biocontrol metabolites [12-

14]. This study, therefore, evaluates M. viridis and O. ficus-

indica juices as cost-effective media for the isolation and 

characterization of PGPR with potential applications in 

sustainable agriculture. 

2. Materials and methods 

2.1. Samples collection 

Samples of spearmint (Mentha viridis L.) and prickly pear 

(O. ficus-indica (L.) Mill.) were collected from the 

Agricultural Research Center Farm, Sirs El-Layan, El-

Menoufia Governorate, Egypt. The vegetative parts were 

stored in sterile plastic bags at 4 °C until use. 

2.2. Preparation of plant-based culture media 

After 30 days of germination, vegetative parts (leaves and 

stems) of spearmint (M. viridis) and mature stem pads of 

prickly pear (O. ficus-indica) were harvested, thoroughly 

washed, sliced, and blended with equal volumes of distilled 

water (w/v) for 5 min using a laboratory blender. The resulting 

homogenate was filtered through cheesecloth to obtain plant 

juice, representing approximately 73-82% of the plant fresh 

weight. The pH values of the extracted juices ranged from 5.8-

6.5 for spearmint and 3.6-5.2 for prickly pear.  

Juices were diluted with distilled water (v/v) at ratios of 1:10, 

1:20, 1:40, 1:80, and 1:100, then solidified with 2% (w/v) agar. 

The pH was adjusted to 7.0, and the media were sterilized by 

autoclaving at 121 °C and 1.5 atm for 20 min. The chemical 

composition of the plant juices was previously reported by [15, 

16]. 

2.3. Soil sampling and preparation 

Rhizosphere soil samples associated with M. viridis and 

O. ficus-indica plants were collected from the previously 

mentioned farm site. The samples were gently ground, passed 

through a 2 mm sieve, and air-dried for subsequent physical 

and chemical analyses (Table 1). 

2.4. Isolation of rhizospheres microorganisms 

Roots of spearmint (M. viridis) and prickly pear (O. ficus-

indica) plants with adhering soil were collected. One gram of 

rhizosphere soil was suspended in 10 mL of sterile distilled 

water and vortexed (150 rpm, 10 min). Serial dilutions (10-1-

10-6) were prepared, and 0.1 mL aliquots from each dilution 

were spread in triplicate onto spearmint- and prickly pear–

based agar media using sterile L-shaped glass rods. Plates were 

maintained at 30 °C for an incubation period of 24-48h. 

Distinct bacterial and actinomycete colonies were repeatedly 

streaked onto fresh plant-based agar plates for purification 

[17], transferred to agar slants, incubated at 37 °C, and 

preserved at 4 °C as stock cultures for further studies. 

2.5. Characterization of isolated rhizobacteria 

2.5.1. Determination of phytohormones 

- Auxin (Indole-3-Acetic Acid, IAA) 

Bacterial isolates were cultured in 100 mL plant-based 

broth supplemented with 500 µg/mL tryptophan and incubated 

in 250 mL flasks on a rotary shaker at 150 rpm and 36 ± 2 °C 

for 72h. Actinomycetes isolates were cultivated under the 

same conditions without tryptophan supplementation, using 5 

mm disks from 5-day-old cultures and incubating at 30 °C for 

7 days. Culture broths were centrifuged (3,000-4,000 rpm, 15 

min), and the supernatants were used for analysis. 

IAA production was quantified by mixing 1 mL of supernatant 

with 2 mL of Salkowski reagent, incubating for 30 min in the 

dark, and measuring absorbance at 530 nm. Uninoculated 

medium served as a control. Concentrations were calculated 

against a standard IAA curve [18- 20]. 

- Gibberellic acid (GA) 

Supernatants obtained as above (without tryptophan) were 

adjusted to pH 8.6 with 1% NaOH and extracted three times 

with equal volumes of ethyl acetate. The combined fraction 

was evaporated, and the aqueous phase was acidified to pH 2.8 

with 1% HCl before re-extraction with ethyl acetate. The final 

fraction, containing GA, was used for quantification. 

GA content was determined by mixing 1 mL of the ethyl 

acetate extract with 1 mL of HCl, 1 mL of Folin-Denis reagent, 

and 3 mL of distilled water. After heating in a boiling water 

bath (5 min) and cooling, absorbance was read at 750 nm and 

compared with a standard GA curve [21, 22]. 

2.6. Estimation of metabolites 

2.6.1. Total carbohydrates 

Soluble and insoluble sugars in culture supernatants of 

bacterial and actinomycete isolates were quantified as glucose 

using the phenol-sulfuric acid method [23]. 
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Table 1. Physical and chemical analysis of rhizosphere soil. 

Parameters 

pH* 7.90 ESP*                           1.47  

Sp* 32.5 Organic matter (%)     2.42   

EC* ds/m 0.62   CaCO3 (%)   2.10         

Soluble Cations (meq/L) Available nutrients (mg.kg-1) 

Ca++  3.02 N 18.90 

Mg++ 1.02 P 8.23 

Na+ 2.65 K                                                         229.1 

K+ 0.06 Particles size distribution (%)  

Soluble anions (meq/L) Sand 28.4 

Cl- 3.37 Silt 30.9 

HCO3
- 1.86 Clay      40.7 

SO4
2-  1.52 

Textural class                                    Clay 
SAR* 1.86 

* pH= in suspension (1:2.5); SP= Saturation Percentage;  EC= Electrical Conductivity;  SAR= Sodium Absorption Ratio; 

ESP=Exchange Sodium Percentage. 

One milliliter of the sample was mixed with 1 mL of 5% 

phenol and 5 mL of concentrated H2SO4. After cooling (25-30 

°C, 20 min), absorbance was measured at 490 nm against a 

glucose standard curve. 

2.6.2. Phosphate solubilization 

The solubilization of inorganic phosphate was determined 

following Mehta and Nautiyal [24]. Isolates were inoculated 

into 50 mL of National Botanical Research Institute's 

phosphate growth medium (NBRIP) broth in 150 mL flasks 

and incubated (bacteria: 36 ± 2 °C, 3 days; actinomycetes: 30 

°C, 7 days). Cultures were centrifuged (10,000 rpm, 10 min), 

and the supernatant was mixed with Barton’s reagent [solution 

A: Ammonium molybdate (25 gm) was dissolved in 400 ml 

distilled water. Solution B: Ammonium metavanadate (1.25 

gm) in 300 boiled distilled water and cooled, then 250 ml conc. 

HNO3 was added. Solutions A and B were mixed and the 

volume was made up to 1000ml with distilled water. 

Absorbance was recorded at 420 nm, and soluble phosphate 

was estimated against KH₂PO₄ standards [25]. 

2.6.3. Ammonia production 

Ammonia production was tested in peptone water [26]. 

Isolates were incubated (bacteria: 36 ± 2 °C, 3 days; 

actinomycetes: 30 °C, 7 days), followed by the addition of 1 

mL Nessler’s reagent (is prepared by mixing 2 g potassium 

iodide in 5 ml water. To this solution, 3 g of mercury (II) 

iodide is added, and the resulting solution is made to 20 ml. 

Finally, 40 g potassium hydroxide (30 %) is added to provide 

the alkaline base). Ammonia production was indicated by the 

development of yellow to brown coloration [27]. 

2.7. Identification of selected isolates 

The most efficient bacterial (B5) and actinomycete (A3) 

isolates showing strong PGP activities were selected for 

identification. Preliminary characterization included Gram 

staining for the bacterial isolate [28] and morphological 

observation of the actinomycete by the coverslip culture 

method [29]. 

2.7.1. Molecular identification and phylogenetic 

analysis 

Genomic DNA was extracted from pure cultures using a 

commercial kit (Zymo Research, USA) following the 

manufacturer’s instructions. The 16S rRNA gene was 

amplified by PCR using universal primers pA (5′-

AGAGTTTGATCCTGGCTCAG-3′) and pH (5′-

AAGGAGGTGATCCAGCCGCA-3′) [30]. Amplification 

conditions were initial denaturation at 94 °C for 6 min, 35 

cycles of 94 °C for 45 s, 56 °C for 45 s, and 72 °C for 1 min, 

followed by a final extension at 72 °C for 5 min. PCR products 

were separated by electrophoresis on 1% agarose gels. 

Sequences were compared to those in the National Center for 

Biotechnology Information (NCBI) GenBank database using 

Basic Local Alignment Search Tool for Nucleotide sequences 

(BLASTN). Multiple sequence alignment was performed with 

Clustal X [31].  A distance-matrix method (with distance 

https://www.sciparkpub.com/article-details/182
https://www.sciparkpub.com/article-details/182
https://doi.org/10.62184/nhjbas.jnh10020253


 
New Horizons Journal of Basic and Applied Sciences, 2026, Vol. X, Iss. X, 28-39 

 

DOI: 10.62184/nhjbas.jnh10020253 

 

                                                                                                                                                                                                                                                                                                                               
  

  
31 

  

 

Research Article 

options according to Jukes-Cantor) [32] was employed, using 

clustering obtained with the neighbor-joining method [33], 

and phylogenetic trees were constructed by the neighbor-

joining method with bootstrap analysis (1,000 replicates) 

using MEGA v3.1. 

2.7.2. Growth curve determination 

The growth curve of the bacterial isolate B5 was assessed 

in Mentha-based broth by inoculating cultures and incubating 

at 30 °C for 1-6 days. Growth was monitored 

spectrophotometrically at 600 nm [34]. For actinomycete 

isolate A3, growth was measured according to Kumar and 

Kannabiran [35]. Cultures were incubated in Mentha-based 

broth at 30 °C for 1-10 days, and biomass was determined by 

filtering culture broth through pre-weighed dry filter papers, 

drying at 55 °C overnight, and recording the constant dry 

weight (mg/mL). 

2.7.3. Antagonistic activity assay 

The antagonistic potential of isolates B5 and A3 was 

evaluated against Fusarium solani and Rhizoctonia solani 

using a modified dual culture method on potato dextrose agar 

(PDA) [36, 37]. Fungal plugs (0.5 cm) from actively growing 

colonies were placed at the center of PDA plates. B5 was 

streaked around the fungal plug, while A3 was streaked 

centrally and confronted with fungal plugs at 90°. Plates were 

incubated at 28 °C for 4-7 days. Antagonistic activity was 

evaluated by measuring inhibition zones (mm) as the distance 

between fungal mycelial growth and the bacterial or 

actinomycete colony. Measurements were conducted in 

triplicate, and mean values were recorded. 

3. Results and discussion 

3.1. Isolation and growth of rhizospheric 

microorganisms 

A total of ten bacterial isolates were recovered from the 

rhizosphere of prickly pear (O. ficus-indica) using different 

dilutions of Opuntia-based culture media, in accordance with 

Youssef et al. [15], who achieved the isolation of rhizobacteria 

from O. ficus-indica roots using diluted juices (1:20, v/v). In 

addition, seven bacterial and eight actinomycete isolates were 

sourced from the rhizosphere of spearmint (M. viridis), 

incubated on agar media prepared from diluted spearmint 

juices. The most efficient bacterial growth was observed at 

higher juice dilutions (up to 1:80, v/v), likely due to reduced 

osmotic stress and minimized inhibitory effects from 

antimicrobial compounds [38]. 

3.2. Influence of plant-derived nutrients and 

compounds 

Both plant juices provided nutrient-rich environments 

favorable for microbial growth. O. ficus-indica contains 

vitamins, enzymes, sugars, lignin, saponins, salicylic acid, 

amino acids, and essential minerals (Ca, Cr, Cu, Se, Mg, Mn, 

K), all of which support microbial proliferation [5]. Similarly, 

M. viridis juices are abundant in carbohydrates, proteins, 

vitamin C, and minerals (K, Na, Ca, Mg, P), enhancing 

rhizobacterial growth [16]. However, actinomycetes exhibited 

better growth on spearmint-based media compared to prickly 

pear-based media. This difference may be attributed to the 

antimicrobial phytochemicals in O. ficus-indica (phenols, 

tannins, flavonoids, steroids, triterpenoids, alkaloids, 

saponins, salicylic acid), which suppress microbial 

development. Comparable effects were documented by 

McCutcheon et al. [39], who confirmed that certain plant 

extracts, such as Aloe vera, effectively inhibit Gram-positive 

bacteria due to the absence of an outer membrane barrier. 

These findings confirm that plant-based culture media not only 

support the growth of diverse rhizosphere  microorganisms but 

can also act as selective substrates influenced by the nutritional 

and antimicrobial properties of the host plant. 

3.3. Characterization of isolated rhizobacteria 

3.3.1. Indole acetic acid (IAA) production 

All bacterial and actinomycete isolates produced IAA in 

plant-based broth media, with concentrations ranging from 

0.18 to 10.3 µg/mL (Table 2). The highest level was recorded 

for isolate B5 in Mentha-based broth (10.3 µg/mL), followed 

by isolate A3 (5.11 µg/mL). The lowest IAA production was 

observed in isolate O10 (0.18 µg/mL) grown on Opuntia-

based broth. These results agree with Mirza et al. [40], who 

noted that IAA biosynthesis by microorganisms varies with 

species, strain, culture medium, and growth conditions. The 

relatively high IAA production in plant-based broths may be 

linked to the presence of vitamins, salts, carbon, nitrogen, and 

particularly tryptophan, an amino acid with an indole group 

that acts as the physiological precursor for IAA biosynthesis 

[41]. 
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3.3.2. Gibberellin production 

Data presented in Table 2 show that isolate A5 from the 

Mentha viridis rhizosphere exhibited the highest gibberellin 

production (28.25 µg/mL), while the least value was detected 

in isolate O7 from Opuntia ficus-indica rhizosphere (0.37 

µg/mL). The enhanced gibberellin production in plant-based 

media may be explained by their nutrient composition, which 

provides essential growth factors that stimulate phytohormone 

biosynthesis. Previous studies have shown that gibberellin 

production by rhizobacteria is influenced by strain type and 

culture conditions [42]. Environmental parameters such as pH, 

temperature, incubation time, aeration, and light availability 

can also affect both the quantity and type of gibberellins 

produced. For instance, Piccoli and Bottini [43] and Piccoli et 

al. [44] reported that nitrogen supply, oxygen availability, and 

osmotic potential significantly influence gibberellin 

biosynthesis in Azospirillum cultures. 

3.4. Production of total carbohydrates, 

phosphate solubilization, and ammonia by 

microbial isolates 

3.4.1. Carbohydrate production 

Data presented in Table 3 indicate that all bacterial and 

actinomycete isolates produced moderate to low amounts of 

carbohydrates on plant-based culture media. Notably, isolates 

B5 and A3 from the Mentha rhizosphere exhibited the highest 

carbohydrate levels on Mentha-based medium (48 and 50 

µg/mL, respectively). The relatively low yields across isolates 

may be explained by the nitrogen content of the media, which 

is known to suppress carbohydrate accumulation. These 

findings are consistent with [45], who reported that bacterial 

exopolysaccharide production is favored under high carbon 

and low nitrogen conditions. 

3.4.2. Phosphate solubilization 

All isolates demonstrated phosphate-solubilizing activity, 

with concentrations ranging from 90.41 to 877.07 µg/mL 

(Table 3). The highest solubilization was recorded for isolate 

B5, followed by A3. These results agree with [46], who 

estimated that 20-40% of cultivable soil bacteria possess 

phosphate-solubilizing capacity. The enhanced solubilization 

observed in isolates grown on plant-based media is likely due 

to the acidic nature of Mentha (pH 5.8-6.5) and O. ficus-indica 

(pH 4.5-6.5) juices. Such acidic conditions lower the medium 

pH, promoting the release of organic acids that enhance 

phosphorus solubilization [47]. Additionally, as noted by 

Pandey and Maheshwari [48], bacteria employ multiple 

mechanisms, including acid production, chelation, and 

siderophore secretion, to mobilize phosphorus. 

3.4.3. Ammonia production 

Table 3 also shows that approximately 60% of Mentha 

rhizospheric isolates produced high amounts of ammonia in 

peptone water following growth on Mentha-based medium, 

while about 40% of Opuntia ficus-indica rhizospheric isolates 

produced moderate amounts under similar conditions.  

The efficiency of ammonia production may again be linked to 

the pH of the plant juices, with Mentha (pH 5.8-6.5) and O. 

ficus-indica (pH 4.5-6.5) providing favorable ranges for 

microbial activity.  

 

These observations are in line with [49], who demonstrated 

that nitrate production is strongly correlated with pH. 

Ammonia production represents an important PGPR trait, as it 

contributes to soil nitrogen enrichment. However, excessive 

accumulation may alter soil pH, creating alkaline conditions 

that disturb microbial community balance and inhibit fungal 

spore germination [50]. 

3.5. Molecular identification and phylogenetic 

analysis 

Molecular characterization using 16S rRNA gene 

sequencing enabled accurate identification of the bacterial and 

actinomycete isolates. Sequence analysis confirmed their 

association with diverse genera frequently recognized as 

PGPR, such as Bacillus, Pseudomonas, Streptomyces, and 

related taxa. The reliability of 16S rRNA gene sequencing for 

microbial identification is well documented, as this conserved 

region allows resolution at the genus and, in many cases, 

species level [51, 52]. 

Phylogenetic trees were constructed using neighbor-joining 

methods to evaluate the evolutionary relationships among the 

isolates and their closest relatives retrieved from GenBank. 

The clustering patterns revealed that several isolates grouped 

tightly with reference strains of well-known PGPR, indicating 

their close genetic relatedness. Similar phylogenetic clustering 

has been reported in earlier studies of rhizospheric bacteria 

associated with medicinal and crop plants [53, 54]. 
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Table 2. Indole acetic acid (IAA) and gibberellic acid (GA) production by bacterial and actinomycete isolates on plant-

based media. 

Isolates on Mentha-based medium Isolates on O. ficus-indica -based media 

IAA  

(µg/ mL) 

GA 

(µg/mL) 

IAA 

(µg/mL) 

GA 

(µg/mL) 

B1 3.72 5.36 O1 1.32 1.53 

B2 4.10 9.52 O2 1.02 3.87 

B3 5.09 6.06 O3 3.00 0.66 

B4 3.51 7.57 O4 2.78 0.90 

B5 10.3 28.25 O5 0.99 2.98 

B6 4.32 7.81 O6 1.56 7.54 

B7 2.51 11.33 O7 2.33 0.37 

A1 2.22 0.51 O8 1.76 11.98 

A2 1.47 12.42 O9 0.53 8.43 

A3 5.11 23.41 O10 0.18 0.67 

A4 2.67 11.26 - - - 

A5 1.23 1.40 - - - 

A6 2.82 9.31 - - - 

A7 1.54 0.72 - - - 

A8 4.13 7.92 - - - 

Table 3. Carbohydrate production, phosphorus solubilization, and ammonia production by bacterial and actinomycete 

isolates grown on plant-based media. 

Isolates on Mentha-based medium Isolates on Opuntia ficus-indica based media 

Carbohydrate 

concentration  

(µg/ mL) 

P.  

(µg/ mL) 

Ammonia 

production 

Carbohydrate 

concentration  

(µg/ mL) 

P.  

(µg/ mL) 

Ammonia 

production 

B1 5 385.57 ++ O1 13 198.7 + 

B2 15 184.85 +++ O2 10 554.5 ++ 

B3 20 519.63 +++ O3 7 209.0 +++ 

B4 8 428.91 + O4 9 331.7 + 

B5 48 877.07 +++ O5 23 730.1 +++ 

B6 30 415.52 +++ O6 19 472.8 + 

B7 6 350.24 ++ O7 44 390.2 ++ 

A1 14 562.88 ++ O8 23 397.4 + 

A2 12 288.46 +++ O9 17 555.2 -ve 

A3 50 758.43 ++ O10 34 178.9 + 

A4 10 90.41 +++ - - - - 

A5 31 690. 43 ++ - - - - 

A6 20 321.85 +++ - - - - 

A7 6 260.63 +++ - - - - 

A8 26 534.11 -ve - - - - 
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Figure 1. 16S rRNA-based phylogeny of Bacillus safensis isolate with related taxa. 

 

Figure 2. 16S rRNA-based phylogeny of Streptomyces rochei isolate and related reference strains. 
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The phylogenetic positioning of these isolates supports their 

functional role as PGPR, as species belonging to these genera 

are widely recognized for attributes such as IAA biosynthesis, 

phosphate solubilization, and biocontrol activity. Moreover, 

phylogenetic diversity among isolates suggests that different 

bacterial lineages contribute synergistically to plant growth 

promotion. This diversity is of ecological significance, as a 

heterogeneous microbial community can enhance resilience 

under variable soil and environmental conditions [55, 56]. 

Taken together, molecular identification and phylogenetic 

analysis confirmed the taxonomic placement of the isolates 

and highlighted their prospective functional roles in the 

rhizosphere. These findings highlight the importance of 

integrating molecular tools with biochemical and 

physiological assays to achieve a comprehensive 

understanding of PGPR diversity and function (Figures 1 and 

2). 

3.6. Growth curve of the most efficient isolates 

 The growth dynamics of Bacillus safensis and 

Streptomyces rochei are shown in Figure 3 A and B. B. 

safensis displayed exponential growth between the second and 

third day of incubation, reaching its maximum density on the 

third day. Thereafter, a slight decline in growth was observed 

on the fourth day, marking the transition to the stationary 

phase (Figure 3A). In contrast, S. rochei exhibited a slower but 

more prolonged exponential phase, with rapid growth 

occurring between the fourth and seventh days of incubation, 

followed by a slight decrease on the eighth day (Figure 3B). 

These growth patterns highlight the distinct physiological 

behaviors of the isolates, reflecting their inherent metabolic 

and ecological adaptations. 

The transition from exponential to stationary phase is typically 

correlated with the onset of secondary metabolite production 

in microorganisms. For Bacillus species, the stationary phase 

typically triggers the synthesis of antimicrobial lipopeptides 

and other metabolites that contribute to biocontrol activity 

[57]. Similarly, Streptomyces spp. is well known for producing 

antibiotics and antifungal compounds predominantly during 

the late exponential and stationary phases, when nutrient 

limitation induces secondary metabolism [58]. Thus, the 

observed growth patterns of B. safensis and S. rochei may 

directly relate to their antagonistic potential, with peak 

antifungal activity coinciding with phases of active metabolite 

production. 

3.7. Antagonistic activities against root rot fungi 

Both isolates demonstrated antagonistic potential against 

soilborne pathogenic fungi. B. safensis exhibited strong 

inhibitory activity against Fusarium oxysporum, producing a 

mean inhibition zone of 17 ± 2 mm (Table 4). These results 

align with earlier findings by [59], who reported effective 

antifungal activity of Bacillus spp. against Fusarium 

graminearum, contributing to the protection of durum wheat. 

Similarly, S. rochei was highly effective against 

Rhizoctonia solani, producing an inhibition zone of 16 ± 0.8 

mm (Table 4). This observation agrees with previous reports 

demonstrating the antagonistic potential of Streptomyces spp., 

including S. rochei, against R. solani [61] and F. oxysporum 

[60]. The antifungal efficacy of both isolates suggests that their 

biocontrol activity is likely linked to the formation of secondary 

metabolites occurring in the stationary phase. Such traits 

reinforce their promise as sustainable alternatives to chemical 

fungicides for crop protection. 

Table 4. Biocontrol activity of selected isolates against Fusarium oxysporum and Rhizoctonia solani. 

Isolates 
Fusarium oxysporum 

Clear zone (mm) 

Rhizoctonia solani  

Clear zone (mm) 

Bacillus safensis 17 ± 2 13 ± 1.6 

Streptomyces 

rochei 
12 ± 1.2 14 ± 0.8 
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4. Conclusion 

The results demonstrate that Mentha viridis and Opuntia 

ficus-indica juices can serve as effective, low-cost alternatives 

to synthetic culture media for supporting microbial growth. 

These plant-based media enabled the isolation of diverse 

bacteria and actinomycetes with strong plant growth-

promoting traits, highlighting their promise for sustainable 

biofertilizer development and environmentally friendly 

microbial screening. 
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