Porous Titanium for Medical Implants

1Walaa Abd-Elaziem,2,3 Moustafa M. Mohammed, 3Hossam M. Yehia, 4Tamer A Sebaey, 4Tabrej Khan

1Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, 44519, Egypt
2Mechanical Department, Faculty of Technology and Education, Beni-Suef University, Beni Suef 62511, Egypt
3Production Technology Department, Faculty of Technology and Education, Helwan University, Saray-El Qoupa, El Sawah Street, Cairo 11281, Egypt; hossamelkeber@techedu.helwan.edu.eg;
4Department of Engineering Management, Faculty of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

Porous titanium and its alloys have shown immense promise as orthopedic and dental implant materials owing to their tailororable porosity, enabling blood vessels and bone in-growth, transport of nutrients/biofluids, and vascularization. This facilitates osseointegration, which is critical for device integration and stability. The review investigated into the influence of pore characteristics such as size, shape, interconnectivity, and gradients on biological response and mechanical properties, along with key considerations in scaffold design. Recent papers showed the progress are summarized in field of biomaterials including processing techniques utilized in fabricating porous. Recent advancements in porous titanium biomaterials including processing techniques utilized in fabricating porous titanium such as powder metallurgy, additive manufacturing, plasma spraying, etc., for constructing optimized porous architectures. Overall, porous titanium structures with controlled porosity and tailored pore networks can promote bone in-growth and long-term stability, overcoming the limitations of traditional dense titanium implants.

Keywords: Porous titanium, Titanium alloys, Biomedical implants, Additive manufacturing (AM), Elastic modolus

* Corresponding author: Moustafa M. Mohammed at Mechanical Department, Faculty of Technology and Education, Beni-Suef University, Beni Suef 62511, Egypt,
E-mail address: moustafa.mahmoud@techedu.bsu.edu.eg
Tel: +201069455569
1. Introduction

The organs and tissues in the human body have precise and complex functions. Our lives always depend on the performance of these organs to their functions properly. However, sometimes these organs and tissues are damaged and can fail due to diseases or accidents. There are many medical treatments available that can help treat damaged organs, but many of these treatments still lack the ability to repair the organ until it regains full function. The regenerative medicine field seeks to provide new tools that repair or replace organs and tissues damaged [1]. Regenerative medicine uses so-called tissue engineering to develop new strategies for repairing organs and tissues damaged. Tissue engineering involves using biology, chemistry, and engineering; to make new biomaterials that are compatible with the human body and can be used to repair or replace organs and tissues [2]. Biomaterials have improved significantly since their first development, and are still changing as scientists continue to try to better understand diseases and how these materials interact with the body. Biomaterials can take many forms where it is produced from many different materials. Ideally, biomaterials should have a porous structure, with small holes that allow air, fluids, and even cells to pass through, similar to the organs and tissues they are intended to treat [3]. Cells that aid in the healing process are loaded into these tiny holes that permeate the biomaterial [2]. In this way, in order to can use a porous biomaterial to transfer cells to damaged tissue. The biomaterial helps maintain new cells in tissues, and at the same time is necessary to promote the healing process. Moreover, the porous structure of the biomaterial closely resembles the “exocellular matrix,” which is such as the hooks by which cells in the body are “grabbed” [2,4].

Titanium and its alloys are extensively used in biomedical implants because they offer a combination of high strength, lightness, resistance to corrosion, and compatibility with biological tissues. Currently, materials used in these applications include 316L stainless steel, cobalt-chromium alloys, and titanium-based alloys, especially Ti6Al4V [5,6]. However, these materials sometimes fail after prolonged use for various reasons, including their stiffness relative to bone, inadequate wear and corrosion resistance, and insufficient compatibility with biological tissue. Achieving a critical stiffness match between orthopedic implants and adjacent bone is crucial to avoid issues such as stress shielding, bone resorption, and implant failure. Despite advancements in biomaterials and tissue engineering, ongoing research focuses on developing durable metallic implants due to concerns about the long-term performance of current metallic biomaterials. Porous
titanium structures have demonstrated immense potential to transform orthopedic and dental implant performance via tailorable interconnected pore networks facilitating bone infiltration and vascularization. It is reported that the elastic modulus of these porous titanium structures is significantly lower, ranging from 91% to 96%, compared to dense titanium alloys [7]. Moreover, porous titanium and its alloys have emerged as promising candidate materials for orthopedic and dental implants owing to their outstanding biocompatibility, corrosion resistance, and mechanical properties closer to natural bone [8–10]. The incorporation of controllable porosity in titanium implants facilitates bone ingrowth, transport of nutrients/biofluids, and vascularization, promoting osseointegration critical for device integration and stability. This, in turn can significantly enhance post-implantation healing outcomes and long-term implant lifespan performance. Accordingly, extensive research has focused on engineering titanium implant surfaces and bulk structures with optimized porous architectures. This includes the fabrication of porous coatings on conventionally dense implants as well as printing fully porous titanium components using additive manufacturing. In addition to processing innovations, pore topography, interconnectivity, and gradients also influence biological responses [11,12].

A prime determinant of in-vivo device integration is the effective pore volume fraction; studies indicate that ≥50% porosity enables sufficient bone in-growth [13]. Wang et al. [14] found that in the context of early-stage osteonecrosis of the femoral head (ONFH) after core decompression, a biogenic trabecular porous titanium rod, manufactured through the selective laser melting technique, exhibited notable quantitative advantages over core decompression alone. The rod group demonstrated significantly higher ratios of bone volume to total volume (BV/TV) at both 3 months (890.0% increase) and 6 months (438.1% increase) compared to the core decompression (CD) group. The histological analysis supported these findings, showing substantial improvements in BV/TV in the rod group, with increases of 881.0% at 3 months and 413.3% at 6 months. Woodard et al. [15] found that hydroxyapatite (HA) scaffolds with multi-scale porosity, specifically microporous (MP) scaffolds with both microporosity (250–350 μm) and microporosity (2–8 μm), demonstrated superior osteoconductivity, drug-carrying efficacy, and mechanical properties compared to non-microporous (NMP) scaffolds, showcasing the importance of scaffold microporosity for bone ingrowth and mechanical behavior in HA implant materials. The profound influence of porous titanium surface topographies on modulating osteoblast cell
morphology, adhesion, differentiation, and mineralization also underlines the role of multiple hierarchical porosity.

This study provides a short review of the current advancements in porous titanium-based biomaterials for medical implants. The review explores the impact of pore characteristics on biological and mechanical aspects, as well as summarizing recent advancements in processing techniques for constructing optimized porous architectures.

2. Titanium and its properties

Titanium's widespread use in medical implants is grounded in its exceptional biocompatibility, with attributes such as inertness, a stable oxide layer, and the potential for osseointegration. Its strength-to-weight ratio and flexibility, resembling human bone's elastic modulus, result in robust yet lightweight implants, essential for load-bearing applications such as joint replacements. The adsorption of proteins onto titanium surfaces plays a crucial role in osseointegration, influencing cellular responses and promoting implant integration [16]. Beyond its neutral interaction with the body, titanium actively fuses with bone, ensuring the stability and durability of implants, particularly in dental and orthopedic applications. With minimal ion release, titanium exhibits corrosion resistance inside the human body, avoiding potential harm or allergic reactions. Its non-magnetic nature makes it ideal for patients requiring MRI scans, ensuring safety and compatibility.

The innate oxide layer grants passive corrosion protection while permitting biofunctionalization, which is essential for integration. However, elastic moduli still exceed natural bone, leading to stress shielding driven-long-term failures. Fig.1 shows the failure causes of implants leading to revision surgery.

Thus, ongoing research scrutinizes the absolute biocompatibility of titanium alloys, leading to the development of new beta titanium alloys with non-toxic elements such as Ta, Nb, and Zr. These alloys show promise in terms of improved biocompatibility, strength, and wear resistance, addressing concerns associated with traditional titanium alloys such as Ti6Al4V. The quest for materials devoid of cytotoxic elements and with a low elastic modulus continues, fueled by the need for enhanced biomaterials in medical applications. Hence, porous titanium structures better emulate the cellular architecture of bone through an interconnected, open-cell network with
adjustable porosity and pore sizes while harnessing the advantages of dense titanium/alloy compositions.

Fig. 1 Causes for failure of implants leading to revision surgery.

3. Types of Titanium-Based alloys

The biocompatibility and mechanical properties of titanium and its alloys, vital for medical implants, stem from their crystalline structure, transitioning between hexagonal close-packed (hcp) α and body-centered cubic (bcc) β phases at an allotropic phase transformation temperature [17–19]. Titanium alloys are classified into α, near-α, (α+β), and β types based on their microstructure and alloying elements [20]. The α-type includes commercially pure titanium (CP-Ti) and Ti alloys, known for exceptional corrosion resistance but limited mechanical strength at room temperature [21,22]. Near-α Ti alloys, featuring minor β phases, share similar characteristics with α-type alloys but have not been extensively utilized in biomedical applications. (α+β)-Type Ti alloys, exemplified by Ti–6Al–4V, dominate biomedical applications due to their superior strength, corrosion resistance, and osteointegration capabilities [20,23]. Despite their prevalence, concerns about toxic elements such as vanadium have led to the development of alternatives such as Ti–6Al–7Nb and Ti–5Al–2.5Fe [24–26]. However, high moduli in (α+β)-type alloys may pose
challenges (see Table 1), prompting the exploration of β-type Ti alloys with non-toxic β-stabilizers such as Mo, Ta, and Zr for improved biocompatibility and suitable elastic modulus [27,28]. Fig. 2 compare the elasticity modulus of different biomedical titanium alloys with human bone, stainless steels, and Co-alloys. When comparing (α+β) and β-Ti alloys to 316L stainless steels and cobalt alloys, their ultimate strength values are comparable with those of 316L stainless steels but lower than those of cobalt alloys, while their yield strengths are also comparable with those of 316L stainless steels but closer to the lower side of the range for cobalt alloys (see Table 1).

However, dense forms of these titanium biomaterials with a misfit Young’s modulus can induce stress-shielding, causing instability at the bone-implant interface. This can result in fibrous tissue ingrowth, disruption of osseointegration, implant mobility, and an inflammatory response necessitating revision surgery. To overcome these issues associated with bulk materials such as titanium, porous materials have been developed. These materials aim to decrease Young's modulus, approaching values similar to bone, thereby improving stress distribution patterns and creating favorable conditions for bone remodeling.

Table 1. A comparison of mechanical properties of metallic implants titanium alloys for biomedical applications with human bone, stainless steels, and Co-alloys.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Elastic Modulus (GPa)</th>
<th>Yield Strength (MPa)</th>
<th>Ultimate strength (MPa)</th>
<th>Engineering strain [%]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone</td>
<td>5 – 23</td>
<td>30 – 70</td>
<td>194 – 195</td>
<td>-</td>
<td>[29]</td>
</tr>
<tr>
<td>Ti (unalloyed)</td>
<td>105</td>
<td>692</td>
<td>785</td>
<td>-</td>
<td>[31]</td>
</tr>
<tr>
<td>Ti-20Ag</td>
<td>~103</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[32]</td>
</tr>
<tr>
<td>Ti-6Al-2Sn-4Zr-2Mo-0.1Si</td>
<td>114</td>
<td>990</td>
<td>1010</td>
<td>-</td>
<td>[33]</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>113</td>
<td>999</td>
<td>1173</td>
<td>6</td>
<td>[34]</td>
</tr>
<tr>
<td>Porous-Ti-6Al-4V</td>
<td>5.1</td>
<td>-</td>
<td>171.86</td>
<td>-</td>
<td>[35]</td>
</tr>
<tr>
<td>Ti-6Al-7Nb</td>
<td>114</td>
<td>880-950</td>
<td>900-1050</td>
<td>8-15</td>
<td>[36]</td>
</tr>
<tr>
<td>Ti-5Al-2.5Fe</td>
<td>112</td>
<td>895</td>
<td>1020</td>
<td>15</td>
<td>[36]</td>
</tr>
<tr>
<td>Ti-6Al-2Sn-4Zr-6Mo</td>
<td>114</td>
<td>1000-1100</td>
<td>1100-1200</td>
<td>-</td>
<td>[33]</td>
</tr>
<tr>
<td>Ti-5Al-2Sn-2Zr-4Mo-4Cr</td>
<td>112</td>
<td>1050</td>
<td>1100-1250</td>
<td>-</td>
<td>[33]</td>
</tr>
<tr>
<td>Ti–5Al–1.5B</td>
<td>107</td>
<td>820–930</td>
<td>925–1080</td>
<td>15–17</td>
<td>[37]</td>
</tr>
<tr>
<td>Ti-10Cr-20Nb</td>
<td>17</td>
<td>1180</td>
<td>1580</td>
<td>-</td>
<td>[38]</td>
</tr>
<tr>
<td>Ti-20Cr-10Nb</td>
<td>50</td>
<td>980</td>
<td>1590</td>
<td>-</td>
<td>[38]</td>
</tr>
<tr>
<td>Ti-20Cr-20Nb</td>
<td>28</td>
<td>1015</td>
<td>1700</td>
<td>-</td>
<td>[38]</td>
</tr>
<tr>
<td>Ti–12V–6Sn</td>
<td>57</td>
<td>897</td>
<td>1024</td>
<td>10</td>
<td>[39]</td>
</tr>
<tr>
<td>Composition</td>
<td>Ti-4.5Al-3V-2Mo-2Fe</td>
<td>110</td>
<td>900</td>
<td>960</td>
<td>-</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Ti-35Nb-7Zr-4Cu</td>
<td>57</td>
<td>1062</td>
<td>1374</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td>Ti-35Nb-7Zr-7Cu</td>
<td>63</td>
<td>1205</td>
<td>1602</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td>Ti-35Nb-7Zr-10Cu</td>
<td>74</td>
<td>1469</td>
<td>1856</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td>Ti-35Nb-7Zr-13Cu</td>
<td>79</td>
<td>1216</td>
<td>1571</td>
<td>-</td>
<td>[40]</td>
</tr>
<tr>
<td>Ti-20Nb</td>
<td>74</td>
<td>438</td>
<td>527</td>
<td>-</td>
<td>[41]</td>
</tr>
<tr>
<td>Ti-45Nb</td>
<td>64.3</td>
<td>438</td>
<td>527</td>
<td>-</td>
<td>[42]</td>
</tr>
<tr>
<td>Ti-42Nb</td>
<td>60.5</td>
<td>674</td>
<td>683</td>
<td>11.7</td>
<td>[43]</td>
</tr>
<tr>
<td>Ti-42Nb</td>
<td>47.9</td>
<td>715</td>
<td>718</td>
<td>17.8</td>
<td>[44]</td>
</tr>
<tr>
<td>Ti-27.5Nb</td>
<td>70</td>
<td>800</td>
<td>820</td>
<td>10</td>
<td>[45]</td>
</tr>
<tr>
<td>Ti-15Mo</td>
<td>84</td>
<td>745</td>
<td>921</td>
<td>25</td>
<td>[34]</td>
</tr>
<tr>
<td>Ti-15Mo</td>
<td>78</td>
<td>544</td>
<td>874</td>
<td>21</td>
<td>[37]</td>
</tr>
<tr>
<td>Ti-35Nb-6Ta</td>
<td>50</td>
<td>-</td>
<td>820</td>
<td>~10-12</td>
<td>[46]</td>
</tr>
<tr>
<td>Ti-35Nb-15Zr</td>
<td>72.82</td>
<td>1185.18</td>
<td>1199.39</td>
<td>6.7</td>
<td>[47]</td>
</tr>
<tr>
<td>Ti–15Zr–10Cr</td>
<td>78</td>
<td>1038</td>
<td>-</td>
<td>-</td>
<td>[48]</td>
</tr>
<tr>
<td>Ti-7Mn-10Nb</td>
<td>87</td>
<td>842</td>
<td>1842</td>
<td>~34</td>
<td>[49]</td>
</tr>
<tr>
<td>Ti-16Nb-10Hf</td>
<td>81</td>
<td>730-740</td>
<td>740-850</td>
<td>10</td>
<td>[30]</td>
</tr>
<tr>
<td>Ti-25Zr-25Nb</td>
<td>60</td>
<td>1025</td>
<td>1588</td>
<td>32.9</td>
<td>[50]</td>
</tr>
<tr>
<td>Ti-24Nb-0.5O</td>
<td>54</td>
<td>665</td>
<td>810</td>
<td>-</td>
<td>[51]</td>
</tr>
<tr>
<td>Ti-24Nb-0.5N</td>
<td>43</td>
<td>665</td>
<td>665</td>
<td>-</td>
<td>[51]</td>
</tr>
<tr>
<td>Ti–35Nb–4Sn</td>
<td>55</td>
<td>-</td>
<td>~470</td>
<td>-</td>
<td>[52]</td>
</tr>
<tr>
<td>Ti-26Nb-8Mo</td>
<td>54.5</td>
<td>663</td>
<td>-</td>
<td>-</td>
<td>[53]</td>
</tr>
<tr>
<td>Ti–20Nb–1.0Ru</td>
<td>65</td>
<td>920</td>
<td>960</td>
<td>~22</td>
<td>[54]</td>
</tr>
<tr>
<td>Ti-15Mo–2.8Nb–0.2Si</td>
<td>83</td>
<td>945-987</td>
<td>979-999</td>
<td>16-18</td>
<td>[37]</td>
</tr>
<tr>
<td>Ti-15Mo-2.8Nb-3Al</td>
<td>82</td>
<td>771</td>
<td>812</td>
<td>-</td>
<td>[55]</td>
</tr>
<tr>
<td>Ti–15Mo–3Nb–0.3O</td>
<td>82</td>
<td>1020</td>
<td>1020</td>
<td>-</td>
<td>[55]</td>
</tr>
<tr>
<td>Ti-23Nb-0.7Ta-2Zr</td>
<td>55</td>
<td>280</td>
<td>400</td>
<td>-</td>
<td>[51]</td>
</tr>
<tr>
<td>Ti-25Zr-20Nb-5Ag</td>
<td>61</td>
<td>1544</td>
<td>2184</td>
<td>22.4</td>
<td>[50]</td>
</tr>
<tr>
<td>(50Ti-50Zr)77-15Nb-8Mo</td>
<td>96</td>
<td>545</td>
<td>-</td>
<td>-</td>
<td>[56]</td>
</tr>
<tr>
<td>Ti-25Nb-5Sn-2Cr</td>
<td>68</td>
<td>314</td>
<td>-</td>
<td>-</td>
<td>[57]</td>
</tr>
<tr>
<td>Ti–5Cr–3Au–1Cu</td>
<td>~11.2</td>
<td>~520</td>
<td>~670</td>
<td>31</td>
<td>[58]</td>
</tr>
<tr>
<td>Ti–25Nb–6Zr–1.7Fe</td>
<td>61</td>
<td>598</td>
<td>1256</td>
<td>15.7</td>
<td>[59]</td>
</tr>
<tr>
<td>Ti–35Nb–5Ta–7Zr–0.4O</td>
<td>66</td>
<td>976</td>
<td>1010</td>
<td>-</td>
<td>[55]</td>
</tr>
<tr>
<td>Ti-23Nb-0.7Ta-2Zr-1.2O</td>
<td>60</td>
<td>830</td>
<td>880</td>
<td>-</td>
<td>[51]</td>
</tr>
<tr>
<td>Ti-27.5Nb-8.5Ta-3.5Mo-2.5Zr-5Sn</td>
<td>70</td>
<td>826</td>
<td>846</td>
<td>-</td>
<td>[60]</td>
</tr>
</tbody>
</table>
4. Importance of Porosity in Medical Implants

Porosity is a critical property of biomaterials used for medical implants that enables tissue integration, vascularization, and diffusion of nutrients and waste products [11,61–63]. Implants made from metals, ceramics, or polymers often aim to mimic the porous architecture of natural bone through engineered surface modifications that create microscopic pores and channels. The size, density, interconnectivity, and orientation of pores within an implant biomaterial dramatically impact its performance and determine outcomes in osseointegration, infection resistance, and long-term viability.

For bone implants such as joint replacement prosthetics, dental implants, and fracture fixation devices, porosity facilitates bone ingrowth during osseointegration. Pore sizes between 100-400 microns allow osteoblasts and mesenchymal stem cells to penetrate the implant surface, differentiate, and begin secreting new bone matrix [64–66]. Moreover, it has been noted that for
an implant to effectively encourage the growth of bone, having an optimal porosity level ranging from 20% to 50% is essential [67]. Highly porous surfaces with 3-dimensional interconnected networks of pores enable more rapid bone integration across the entire implant rather than isolated regions. The degree of porosity can be tuned during manufacturing through methods such as extrusion, injection molding, or 3D printing of the bulk biomaterial. Beyond osseointegration, porosity imparts critical advantages in infection prevention and antibiotic delivery for orthopedic implants. Studies find that porous surfaces help protect bones from competing bacterial colonization while allowing the migration of macrophages, lymphocytes, and nutrients to fight infection [68,69]. Local antibiotic elution is also enhanced by porous channels and reservoirs that increase drug loading capacity [69]. For hip and knee arthroplasties where chronic infection can necessitate implant removal, built-in porosity serves as a safeguard.

The porous architecture that assists short-term bone in-growth can also determine the long-term stability of an implant by allowing continued diffusion of nutrients and waste transport. Densely calcified, avascular interfaces between bone and implants often lead to fibrous encapsulation, isolating the implant over time. This starvation causes cell death, loosening, and a potential fracture around the affected region. Implant designs and surfaces that facilitate highly vascular integration through interconnected porosity help prevent this scenario.

5. Titanium scaffolds design

Porous titanium scaffolds for bone implants and tissue engineering applications require careful design considerations across multiple key parameters. The pore geometry, including overall topology (spherical, cubical, etc.) and pore size distributions, needs optimization based on mechanical requirements and intended bone and vascular in-growth behavior. According to Van Bael et al. [70], Ti6Al4V scaffolds featuring hexagonal pores exhibited the most significant cell growth, which decreased in scaffolds with rectangular pores and further diminished in those with triangular pores (refer to Fig. 3). This discrepancy is attributed to the higher number of corners and the shorter distance between the two arches in the corners, especially noticeable in hexagonal pores. Consequently, cell bridging occurs more rapidly in hexagonal pores compared to rectangular and triangular pores, where the struts are more widely spaced. Despite this, it was observed that the regulation of osteogenic differentiation in the cells was independent of their proliferation, and alkaline phosphatase (ALP) activity increased in triangular pores [70].
Manufacturing technique constraints, including solid-state foaming, powder sintering, electrodeposition, or additive manufacturing, inform achievable pore geometries [71]. For a given production method, fine-tuning processing factors such as applied stresses, sintering profiles, laser scanning patterns, and post-treatments enable tailoring final porous structure metrics such as density, surface-area-to-volume ratios, interconnectivity, and anisotropy based on application needs. Robust characterization using scanning electron microscopy, micro-computed tomography, and related image analysis quantifies the resulting pore morphology down to the μm-scale to feed back into subsequent design revisions and process parameter improvements for the titanium scaffold architecture. By following these steps in scaffold design, optimized application-specific porous titanium implants can be constructed to promote bone in-growth.

![Fig. 3](A) Differently designed Ti6Al4V scaffolds, and (b) Representative live/dead staining images with green fluorescence for living cells as well as SEM images of osteoprogenitor cells on six Ti6Al4V scaffold designs for 14 days, indicating differences in pore occlusion among designs (T: triangular, H: hexagonal, R: rectangular) and culture media (OM: osteogenic medium, GM: growth medium) [70].
6. Effect of pores on mechanical properties

The pore structure and distribution in a material significantly impact its mechanical properties and performance. Porosity, referring to the volume of pores within a material, influences strength, stiffness, durability, etc. For example, higher porosity tends to decrease the density of a material as well as reduce its strength and stiffness. This is because pores represent discontinuities in the material structure that can serve as stress concentrators. However, some level of controlled porosity can also be beneficial for properties such as impact and energy absorption through mechanisms such as crack deflection. An interconnected pore network could also influence fluid transport properties such as permeability and wicking action. The specific pore size distribution further influences the mechanical response. Zaharin et al. [72] produced titanium alloy porous implants with 57.48% to 79.36% porosity using LPBF. They observed that at around 70% porosity, the mechanical properties resemble those of natural bone. Zhao et al. [73] produced octahedral porous scaffolds with two different porosities using LPBF. The findings indicate that scaffolds with a 500 μm pore size exhibit superior compression and fatigue properties, while those with a 1000 μm pore size and 77% porosity are more suitable for cell adhesion. Yan et al. [73] manufactured Ti6Al4V ELI porous implants with an octahedral lattice structure using LPBF, and the results indicate that implants with 60% porosity closely align with the mechanical properties of human bone. Zhang et al. [7] utilized electron beam powder bed fusion (EBPBF) for the production of porous titanium structures with a porosity ranging from 61.4% to 79.7%. Their findings reveal that the elastic modulus of these porous titanium structures is significantly lower, ranging from 91% to 96%, compared to dense titanium alloys. Considering the impact of pore size and porosity on mechanical properties, Fig. 4 provides concise summaries. Fig. 4 (a) illustrates the correlation between pore size and yield strength, while Fig. 4 (b) depicts the relationship between porosity and elastic modulus.
7. Fabrication Techniques for Porous Titanium

Fabrication techniques for porous titanium play a pivotal role in tailoring the structure and properties of implants to meet specific biomedical requirements. Various methods are employed to create porous structures, including powder metallurgy, selective laser melting (SLM), electron beam melting (EBM), and three-dimensional (3D) printing, etc. These techniques allow for precise control over pore size, distribution, and overall architecture, influencing factors such as mechanical strength, permeability, and biological integration. The selection of a fabrication method depends on the desired application and the balance between structural integrity and biological functionality in porous titanium implants for medical use. Fabrication techniques for porous titanium alloys include (see Fig. 5):

I. Powder Metallurgy (PM) [75,76]:

The Powder Metallurgy technique provides advantages such as precise control over porosity, the ability to create complex geometries, and improved mechanical properties due to the elimination of some traditional manufacturing steps. For porous titanium alloys, PM utilizes powder particles of titanium alloys to create porous structures. The process involves powder blending, compaction, and sintering to form a porous scaffold.
II. **Selective Laser sintering/Melting (SLS/SLM) [77,78]:**

A laser is selectively applied to titanium alloy powder layers, melting and solidifying them layer by layer. This additive manufacturing technique allows for precise control over porosity and structure. Fig. 5 shows a schematic depiction elucidating the operational principles of SLS/SLM processes.

III. **Electrochemical Machining (ECM):**

Electrochemical machining is a modern machining process that relies on the removal of workpiece atoms by electrochemical dissolution (ECD) in accordance with the principles of Faraday.

IV. **Foam Replication Technique [79,80]:**

A sacrificial template, often made of polymer foam, is infiltrated with a titanium alloy slurry. After solidification, the template is removed, leaving behind a porous titanium structure.

V. **Metal Injection Molding (MIM) [81,82]:**

Titanium alloy powder is combined with a binder material to create a feedstock. This feedstock is injected into a mold, forming a porous green part, which is then sintered to achieve the final porous structure.

VI. **Plasma Spraying [83]:**

Titanium alloy particles are melted in a plasma flame and deposited onto a substrate, creating a porous coating. This technique is often used for surface modification to enhance osseointegration.

VII. **3D Printing [84]:**

Various 3D printing techniques, such as binder jetting or electron beam melting, are employed to build up porous titanium structures layer by layer, offering design flexibility and precision.
VIII. **Solvent Casting Particulate Leaching [85,86]:**

Solvent casting and particulate leaching is an effective method for creating porous titanium structures. In this process, titanium metal powder is mixed into a polymer solution consisting of a solvent such as chloroform and a soluble polymer such as sodium chloride or polyethylene glycol. The mixture is cast into a desired mold shape and then dried so the polymer forms a matrix composite with embedded titanium particles. The composite is then immersed in water, which dissolves and leaches out the salt or PEG particulates. The leaching of polymer particles leaves behind pores of controlled sizes and distributions within the titanium matrix. Properties such as porosity percentages and pore interconnectivity can be tailored by adjusting the polymer-to-titanium particle ratio. After leaching, the porous titanium scaffold maintains the shape of the original mold. This solvent-casting particulate leaching approach provides a simple and inexpensive way of fabricating porous titanium with open and interconnected pores suitable for bone ingrowth needed in biological implants and tissue engineering scaffolds.

IX. **Hydrothermal Synthesis [87]:**

This involves a reaction between titanium precursors in an aqueous solution at elevated temperatures and pressures, resulting in the formation of porous titanium structures.

X. **Fused Filament Fabrication (FFF) [88,89]:**

FFF utilizes a continuous filament of titanium alloy, which is melted and extruded layer by layer to create a porous structure. This technique is commonly used in desktop 3D printing.
8. Challenges and considerations in using porous titanium

The utilization of porous titanium in various applications presents both promising opportunities and distinct challenges. The unique properties of porous titanium, such as its lightweight nature, excellent strength-to-weight ratio, and biocompatibility, make it an attractive choice for medical implants, aerospace components, and other engineering applications. However, several challenges need careful consideration. Achieving a balance between porosity and structural integrity is crucial, as excessive porosity may compromise mechanical strength. Additionally, the
fabrication techniques for porous titanium demand precision and control to ensure consistent pore size, distribution, and interconnectivity. Furthermore, issues related to long-term stability, corrosion resistance, and biological interactions need thorough examination, especially in the context of medical implants. Addressing these challenges will be pivotal in harnessing the full potential of porous titanium across diverse fields.

9. Conclusions and future trends
This review has provided a perspective on the current advancements and future trends in porous titanium alloys for medical implants. Key findings and insights include:

- Porous titanium shows great promise for orthopedic and dental applications owing to its adjustable porosity and pore structure facilitating bone in-growth, vascularization, and stable long-term osseointegration.
- Pore characteristics such as size, shape, interconnectivity, and gradients significantly impact biological response, mechanical properties, and overall scaffold performance.
- Various advanced fabrication methods allow for the construction of porous titanium structures with controlled porosity and optimized pore networks tailored for specific bone regeneration requirements.
- Further optimization of pore architecture, surface engineering, alloy development, and manufacturing processes can enhance the integration and stability of porous titanium implants.
- Interdisciplinary efforts integrating biological factors with materials functionality and manufacturing innovations will be pivotal in unlocking the full potential of porous titanium biomaterials.

Acknowledgments: The author would such as to thank Prince Sultan University for their support.
Conflicts of Interest: The authors declare no conflict of interest.
References:

