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1. Introduction 

The main cause of food spoilage and decay during post-

processing, transportation, and storage is the growth of 

foodborne illnesses and other well-known bacteria on food 

surfaces. One of the most promising active packaging 

technologies involves the production of antimicrobial films by 

incorporating natural or synthetic antimicrobial agents into 

polymeric films [1, 2]. Synthetic thermoplastic polymers are 

the most popular packaging materials due to their numerous 

benefits, including high strength, heat sealability, 

transparency, and transfer resistance. Plastics are generally 

affordable, offer good barriers to heat and oxygen, and resist 

tensile and tensile stresses [3]. Despite these advantages, 

increasing environmental concerns have prompted a review of 

traditional packaging polymers. The goals of traditional food 

Abstract 

Polyvinyl chloride (PVC) is the most widely used material in food packaging production. It is approved for use in food contact 

applications worldwide, and numerous PVC/additive mixtures are already listed on European incomplete additive lists, such as 

those described in EC Directive 2002/72 and its following amendments. However, the use of PVC in contact-sensitive applications, 

such as food packaging, as advised by the Zero Waste Europe office, raises serious concerns. However, phasing out PVC in 

packaging limits consumer choice without providing environmental benefits. Currently, common natural antimicrobials found in 

food packaging include lysozymes, organic acids, bacteriocins, essential oils, chitosan, grapefruit seed extract, allyl isothiocyanate, 

and polysaccharides. The production of natural antimicrobial films involves either direct coating or the incorporation of synthetic 

or natural antimicrobial agents into the film. Although many natural antimicrobial agents have received a generally recognized as 

safe (GRAS) designation, cost and scalability continue to be significant challenges to expanding their use. In price-sensitive 

markets, natural antimicrobials are less practical due to their high production costs. Date seeds are considered potential prototypes 

for developing novel, affordable, and safe antimicrobial films. They include bioactive substances with antiviral, antibacterial, and 

antioxidant qualities. Additionally, date seeds are a source of oil rich in phenols, tocopherols, and phytosterols. This review 

discusses the nature, biocompatibility, and properties of the most common antimicrobial agents in enriched PVC films. It also 

emphasizes how date seeds can be used as organic microbiological materials to preserve food during packing. Since date seeds are 

a low-value byproduct, their disposal is costly, making their utilization economically advantageous.  
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packaging are to keep food products safe, preserve quality, and 

increase shelf life. Products derived from natural sources are 

essential to current strategies for meeting consumer needs and 

maintaining food quality throughout time. Most packaging 

materials are petroleum-based from nonrenewable resources, 

and synthetic plastics are not biodegradable. Since packaging 

accounts for 30% to 40% of municipal solid waste, the amount 

of solid waste generated poses an environmental challenge that 

needs immediate attention. Many studies are ongoing to 

address these issues by exploring ways to valorize and reuse 

waste without harming the ecosystem. Various substances, 

including metal ions, alcohols, ammonium compounds, 

amines, organic and inorganic acids, and metals such as copper 

and silver, have been researched [4, 5]. A suitable rate of 

controlled release of antimicrobial agents during food 

preservation is also made possible by packaging materials [6]. 

Natural substances such as antimicrobials and antioxidants are 

effective in laboratory settings. When incorporated into food 

packaging films, antimicrobial agents often prevent the growth 

of unwanted microorganisms [7-9]. Natural antimicrobial 

agents are becoming more popular because they are seen as 

safe for use in the food industry. These include the possibility 

of using antimicrobial enzymes such as lysozyme, 

lactoperoxidase, chitinase, and glucose oxidase, as well as 

bacteriocins such as nisin, pediocin, and lacticin, as 

biopreservatives [10, 11]. Ensuring food safety involves 

linking active antimicrobial coatings with the diffusion 

behavior of the agents on food surfaces, where microbiological 

degradation begins. In other words, the diffusion rate must 

align with the product's concentration and shelf life, both of 

which must remain within safe limits. Additionally, 

antimicrobial agents should be released gradually during 

storage [12]. Importantly, research on how antimicrobials are 

released from packaging films has focused on the diffusion 

rate [13, 14] and biodegradability [15-18], which influence 

antimicrobial diffusion within the polymer matrix. Numerous 

studies have investigated the mechanisms of antimicrobial 

release from plastic films [19-23], the diffusion of 

antimicrobials from packaging materials [24-26], and 

extensively covered topics such as migration testing, 

nanomaterial safety, industrial scaling, and regulatory updates 

[27-32]. Because of their inherent film qualities, such as 

flexibility, transparency, and ease of processing, plastics are 

widely used in food packaging and antimicrobial food 

packaging, and their use continues to grow. These qualities, 

flexibility, transparency, and ease of processing, have led to a 

sharp increase in plastic use for food packaging and 

antimicrobial food packaging. These films are available in 

oriented and unoriented types and are typically made by 

blending PVC resin, plasticizers, and other additives. PVC is 

permitted for use in food contact applications worldwide. 

According to EC Directive 2002/72 and its updates, numerous 

compounds routinely utilized in PVC are already on European 

additive lists. Like other thermoplastics, PVC packaging can 

be mechanically recycled at the end of its life, and recycling 

facilities for bottles and trays are established across Europe. 

PVC has also been combined with algae extracts to create 

bioplastic films, which are potentially environmentally 

friendly alternatives to traditional plastics [33]. Extracts from 

C. reinhardtii demonstrate antimicrobial activity against 

various bacteria and fungi, suggesting that they could be useful 

in antimicrobial packaging [26]. Therefore, removing PVC 

from packaging options would limit consumer choice without 

providing additional environmental benefits. The primary 

objective of this research was to explore the potential 

integration of various natural antibacterial agents suitable for 

the food industry into the PVC matrix to produce effective 

bioplastic films. 

2. Common natural antimicrobial agents 

In modern medicine, natural substances, especially 

secondary metabolites, are a significant source of 

pharmaceuticals. Antimicrobials can originate from 

microorganisms, plants, or animals. Animal-based natural 

antimicrobial agents include chelators such as chitosan, 

lysozyme, and lactoferrin [34, 35]. Essential oils derived from 

citrus fruit peels, seeds, bulbs, or pods of various plants are 

known as plant-based antimicrobial agents [36, 37]. Similarly, 

microbes produce inhibitory substances that antagonize 

nearby pathogens [38]. Table 1 [39-41] presents classification 

of natural antimicrobial agents, targeted bacteria, processes, 

food applications, and limitations. Additional details on 

microbial, plant, and animal origins, types, and uses can be 

found elsewhere [42-47]. A few natural antimicrobials used in 

food packaging are briefly discussed in the following sections.  
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Table 1. Classification of natural antimicrobial agents according to their sources, targeted microbes, mechanisms, food applications, and 

limitations. 

 

2.1. Essential oils 

Aromatic oil liquids containing up to sixty phenolic 

components are called essential oils. They are mainly 

produced synthetically or extracted from plants. Besides their 

use as flavorings, fragrances, and medicines, they also have 

antiviral, antibacterial, and insecticidal properties, among 

other biological functions [35]. Data on the composition of 

different essential oils have been published in several sources. 

Depending on the harvest time and location, different plant 

species can have varying essential oil compositions [36-38, 

47]. Linalool, E-2-decanal, trans-cinnamaldehyde, carvacrol, 

thymol, -terpinene, p-cymene, -pinene, -tujone, bornyl 

acetate, camphor, 1,8-cineole, -pinene, -tujone, -eugenol, 

and eugenyl acetate are major components of antimicrobial 

essential oils. Figure 1 displays the structural formulas of some 

components with strong antibacterial activity. Hydrophobicity 

is a key property of essential oil components, enabling their 

incorporation into bacterial cell membrane lipids and 

mitochondria, disrupting their structure and increasing their 

permeability [48, 49]. Many essential volatile plant oils are 

known for their wide antimicrobial range; phenolic 

compounds are generally the most effective. Numerous reports 

have shown that essential oils are more effective at inhibiting 

gram-positive bacteria than gram-negative bacteria. Examples 

of the former include clove, oregano, sage, vanillin, rosemary, 

and thyme, whereas examples of the latter include oregano, 

cinnamon, citral, and garlic oil [50]. Today, essential oils are 

most commonly used in food applications, including 

flavorings, fragrances, medications, dental root canal sealants, 

antiseptics, and feed additives for weaned piglets and lactating 

sows [51-54]. The potent effects of these oils are mainly due 

to higher concentrations of secondary metabolites, such as 

aldehydes, ketones, and phenolic compounds, which make 

them highly lipophilic and volatile. Importantly, although 

many essential oil components are approved for various uses, 

some research indicates potential toxicity and irritation. For 

example, during root canal therapy, eugenol, menthol, and 

thymol have been reported to irritate oral tissues. Regular 

exposure to certain constituents may cause allergic contact 

dermatitis. Several oils used in aromatherapy, paramedicine, 

and medicine have demonstrated spasmolytic or spasmogenic 

effects. Therefore, more safety studies are necessary before 

widespread or high-concentration essential oils can be used in 

food. Additionally, direct addition to food products is limited 

by their high volatility, hydrophobicity, tendency to lose 

flavor, and susceptibility to oxidation and photooxidation. 

Synergistic effects with other preservation strategies are 

thought to be advantageous for reducing the negative effects 

of large concentrations of these substances [42]. 

Microbial sources Animal sources Plant sources 
Targeted Microbes 

(Applications) 
Mechanisms Limitations 

Bacteriocins Proteins Essential Oils 
Listeria, C. perfringens, S. aureus 

(Cheese, yogurt, cured meats) 
Layered packaging Strong aroma /flavor  

Nisin, Pediocin, 

etc. 
Lactoperoxidase, Plant extracts 

(+) Gram bacteria Listeria, S. 

aureus 

(Cheese, milk, seafood coatings) 

Inflammation of cells 

Limited spectrum 

against (-) positive 

bacteria 

Pediocin Lactoferrin Lamiaceae families 
S. aureus, E. coli, P. aeruginosa 

(Strawberries, raspberries, beef) 
Disrupt cell membrane 

allergenicity and 

solubility issues 

Bacterial Cell 

Products 
Lysozyme Fabaceae families 

Mesophilic bacteria 

(Sprouts, cabbage) 
DNA damage pH sensitive 

Organic acids Polysaccharide Asteraceae families 
S. aureus, Salmonella 

(Dairy products) 
Mitochondria damage 

Lipid interactions reduce 

the antimicrobial efficacy 

Carbon dioxide Chitosan Cinnamomum verum 
Pseudomonas, Aeromonas 

(Fish fillets) 
Protein denaturation 

Impact on sensory 

properties 

Hydrogen Peroxide Enzymes Rosmarinus vulgaris 
spoilage organisms 

(Cheese, dairy products) 
Electrostatic disruption Shelf-life stability 

Reuterin 
Lactoperoxidase, 

Lysozyme 
Thymus vulgaris 

Molds and yeasts 

(Bakery products) 

Lysosomes’ function 

disturbance 
Cost and scalability 
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2.2. Bacteriocins 

substances are produced by bacteria, encoded by genes, 

and synthesized by ribosomes. They have been explored as 

promising natural sources of antimicrobial agents because of 

tRevisedheir ability to antagonize other bacteria, especially 

closely related species [55-59]. These natural peptides are 

produced by bacteria living in competitive polymicrobial 

environments and are of great interest as potential 

antimicrobial agents against different bacterial, fungal, and 

viral species [60], including resistant structures such as 

bacterial biofilms [61, 62]. The diversity of bacteriocins 

among bacteria provides a broad spectrum of activity [63-65]. 

Owing to this high diversity of bacteria, a wide variety of 

bacteriocins have been identified, with some bacteria capable 

of producing several types [66]. This broad range of 

antimicrobial molecules enables numerous biotechnological, 

industrial, and pharmaceutical applications [67]. Currently, 

bacteriocins are used in two main sectors: combating 

antibiotic-resistant bacteria and the agrifood industry. In the 

first sector, bacteriocins were seen as weapons bacteria use to 

survive, and their potential to fight drug resistance has gained 

increasing interest [68, 69]. In the second, however, they are 

rapidly broken down by proteolytic enzymes and are 

considered safe for human use [54]. 

Based on their size, shape, chemical composition, or mode of 

alteration, bacteriocins can be categorized into multiple types 

[70]. Gram-positive bacteria produce four different classes of 

bacteriocins [71]: small-sized (<5 kDa) lantibiotics, which 

contain unusual amino acids such as dehydrated amino acids, 

lanthionine, and 3-methyllanthionine, which form multiple 

ring structures [72, 73]; nonantibiotics, which do not contain 

unusual amino acids [74, 75]; members, which exhibit a linear 

structure with bisulfide bridges (antilisterial bacteriocins) [76, 

77]; antibiotic action, which requires the production of two-

peptide bacteriocins (α/β), including plantaricin NC8, 

lactococcin G, and lactococcin Q [78]; and small bacteriocins 

associated with a leader peptide sequence, including one or 

two cysteine residues, such as cystibiotics, thiolbiotics, and 

other molecules such as lactococcin A, divergicin A, or 

acidocin B. Finally, all the bacteriocin classes combine. The 

third class of gram-positive bacteriocins includes large 

peptides (>30 kDa), such as zoocin A, lysostaphin, and 

helveticin J and V, which exhibit antibacterial activity via 

enzymatic mechanisms that disrupt the bacterial cell wall [79, 

80]. The final type of gram-positive bacteriocin disrupts 

bacterial cell membranes and is characterized by its lipid- or 

carbohydrates, such as plantaricin S or leuconocin [81]. 

 

 

Figure 1. Chemical formulas of some essential oils containing components possessing high antibacterial properties.
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Figure 2. Examples of lanthionine-containing antibiotics found in bacteriocins made by Gram-positive bacteria (modified 

from Garnizova et al) [88]. 

 

Figure 3. Some antibiotic classes retrieved from bacteriocins produced by gram-negative bacteria (E. coli source) (modified 

from Wu et al) [89].
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On the other hand, gram-negative bacteria produce 

bacteriocins, which are important antimicrobial peptides; most 

of these peptides are isolated from Escherichia coli strains, 

whereas other genera, such as Pseudomonas or Klebsiella, also 

produce antimicrobial peptides [82]. This type of bactericide 

can be divided into four categories: colicins, which are 

bacteriocins with molecular weights greater than 10 kDa [83, 

84]; colicin-like bacteriocins, which are produced by bacteria 

such as Klebsiella spp., klebicins, P. aeruginosa, and S-

pyocins [85]; microcins, which are small peptides (<10 kDa) 

[86]; and phage tail-like bacteriocins [87, 88], which include 

the production of a needle-shaped protein structure, genes 

involved in peptide release, and regulatory genes. The 

bacteriocins in this group are R- and F-pyocins produced by P. 

aeruginosa that stopped membrane potential, leading to pore 

formation in the bacterial membrane. The chemical structures 

of certain bacteriocin components produced by gram-positive 

and gram-negative bacteria are displayed in Figure 2 and 

Figure 3, respectively, along with their amino acid sequences 

[89, 90]. 

2.3. Lysozyme 

Lysozyme, N-acetylmuramic hydrolase, is a tiny, 

monomeric protein (Figure 4) that has nine negatively charged 

amino acid residues, namely, asparagine and glutamine (7 

Asp, 2 Glu), and its eight cysteine residues are joined by four 

disulfide linkages and positively charged amino acid residues, 

namely, lysine and arginine (6 Lys, 11 Arg). The β-(1, 1,4)-

glycosidic link that connects N-acetyl glucosamine and N-

acetylmuramic acid in bacterial cell wall peptidoglycans can 

be broken down by lysozyme. Consequently, its antimicrobial 

effectiveness against gram-positive bacteria has been 

demonstrated in numerous reports. [91] Several varieties of 

lysozymes are known, such as phage, bacterial, and plant 

versions; however, based on structural differences, three main 

families are recognized: c-type, g-type, and i-type. With 129 

amino acids (14.3 kDa). The primary structure of c-type 

lysozyme includes four unbroken disulfide bonds (6 C–127 C, 

30 C–115 C, 64 C–80 C, and 76 C–94 C) formed by cysteine 

residues, six tryptophan (W) residues (W–62 and W–108), 

three tyrosine (T) residues, and three phenylalanine (F) 

residues [92, 93]. Lysozymes are commonly used by 

pharmaceutical companies to treat bacterial, viral, and 

inflammatory diseases. The peptidoglycan β-1,4-glycosidic 

bond is hydrolyzed, and muramidase activity degrades the 

murein layer, decreasing the mechanical strength of the 

bacterial cell wall and ultimately leading to bacterial mortality 

[94]. The bactericidal action of lysozyme is mostly restricted 

to certain Gram-positive bacteria because the outer surface of 

Gram-negative bacteria usually has a protective coating of 

lipopolysaccharide (LPS) as well as proteins and 

phospholipids that prevent lysozyme from accessing the 

peptidoglycan layer [95]. Notably, lysozyme's ability to bind 

to food additives, including food colors and antioxidants, 

provides deeper insight into toxicity profiles and reveals 

metabolic pathways of food ingredients [96]. Antimicrobial 

enzyme immobilization in packaging is a promising approach 

in active food packaging. This method can preserve the 

activity of antimicrobials by preventing direct contact with 

food components such as lipids and proteins. In contrast to 

when the same quantity of lysozyme is merely dispersed or 

sprayed on the food surface, immobilizing lysozyme in films 

isolated from whey protein guarantees that it maintains a 

minimum inhibitory concentration for a longer period at the 

film's outer surface and/or the film–salmon interface. In 

hydrophilic whey protein isolate (WPI) films, lysozyme and 

polyacrylic acid can form a combination that enables gradual, 

sustained release, long-term antibacterial activity, and 

substantial food-preservation potential [97]. The effectiveness 

of lysozyme-based antimicrobial packaging in food 

preservation stems from its unique properties, particularly its 

strong bacteriostatic activity against Gram-positive bacteria.  

2.4. Organic acids 

Organic acids are naturally occurring substances present 

in various foods and are largely produced by microbes. They 

are widely used as antimicrobial agents in the food industry 

and have broad-spectrum antibacterial action [98, 99]. A 

comprehensive review of the mechanisms of preservatives and 

antiseptics revealed that organic acids are more effective than 

mineral acids as antimicrobial agents [100]. Organic acids 

constitute the third-largest global market for production and 

are frequently utilized as antimicrobial agents in the food 

sector [101]. Short-chain organic acids are often associated 

with antibacterial activity because they have 10 or fewer 

carbon atoms. Furthermore, several important characteristics 

affect the effectiveness of organic acids, including their ionic 

form, pKa value, molecular weight, minimum inhibitory 
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concentration, the microbes they target, the food matrix 

buffering capacity, and the length of time they are exposed to 

the acid [102]. With pKa values of 3 to 5, most organic acids 

with antibacterial properties are suitable for use in food 

preservation [103]. Because of their low molecular weight and 

straightforward molecular structure, which enable effective 

penetration into microbial cells, they have significant 

advantages when used as preservatives. After entering, they 

disrupt intracellular functions, which eventually results in cell 

death [104]. The food industry often uses approved organic 

acids, whose structural formulas and pKa values are shown in 

Figure 5. According to recent research, combining organic 

acids with bioactive substances, such as plant extracts and 

essential oils, increases antimicrobial activity, enhancing food 

safety and quality. By preventing oxidation, enzymatic 

breakdown, and microbial growth, this synergistic effect helps 

maintain sensory qualities and nutritional value [105]. As food 

preservatives, oil stabilizers, antimicrobials, active ingredients 

in food packaging, and stabilizers during food processing, 

organic acids serve a variety of purposes [106, 107]. For 

example, tartaric acid derivatives used as antimicrobial agents 

in packaging have demonstrated effectiveness against S. 

maltophilia, P. syringae, P. aeruginosa, and X. beticola, with 

inhibition observed within hours at 37°C. It has also been 

shown that tartaric acid possesses antifungal properties against 

Aspergillus fumigatus, Candida albicans, Malassezia furfur, 

and Trichophyton mentagrophytes var. mentagrophytes [108]. 

2.5. Chitosan 

Chitin (β-(1→4)-poly-N-acetyl-D-glucosamine) is one of 

the most abundant natural polysaccharides found in insects, 

lobsters, shrimp, and crabs. It is the main source of chitosan 

(Figure 6), which is obtained by deacetylating the N-acetyl (N-

OAc) group of chitins [109, 110]. The antibacterial and 

antifungal properties of chitosan have been extensively studied 

and documented. Its antimicrobial properties are affected by 

several factors. such as the origin, pH, molecular weight, and 

degree of de-N-acetylation. Chitosan is soluble only in diluted 

organic acids such as 1% acetic acid and formic acid at pH 

values below 6.0. Around its pKa value, which is between pH 

6 and 6.5, the solubility‒insolubility transition takes place. 

Below pH 6.0, the NH3
+-C2 group of chitosan becomes 

protonated, making it a water-soluble cationic polyelectrolyte. 

Conversely, at pH values above 6.0, the NH₂-C₂ group behaves 

as a basic group, rendering the polymer insoluble. Therefore, 

the solubility of chitosan primarily depends on the degree of 

de-N-deacetylation along its main chain [111]. The 

antimicrobial effects of chitosan can be extracellular, 

intracellular, or both, depending on the target site. Its 

molecular weight determines whether it can penetrate cell 

surfaces to exert intracellular antimicrobial activity. Shorter-

molecular-weight chitosan can act both extracellularly and 

intracellularly, impacting vital biological processes [112, 113]. 

Higher-molecular-weight chitosan, however, cannot typically 

penetrate the cell wall or membrane; its antimicrobial activity 

mainly involves altering cell permeability and blocking 

nutrient and metal uptake externally [114]. Some studies 

suggest that low-molecular-weight chitosan has stronger 

activity against gram-negative bacteria, whereas high-

molecular-weight chitosan has a greater effect on gram-

positive bacteria [115]. This difference is attributed to 

differences in cell wall structure: Gram-positive bacteria have 

thicker peptidoglycan layers, whereas Gram-negative bacteria 

contain more lipopolysaccharides [116]. Chitosan also has 

notable fungicidal effects on various fungal pathogens that 

affect plants and humans. The minimum inhibitory 

concentrations vary depending on factors such as those 

mentioned above, as well as the specific fungus targeted [117]. 

Owing to its excellent biocompatibility and low toxicity, 

Chitosan has attracted significant interest as an excipient in 

pharmaceutical and biomedical applications, particularly in 

nanoparticle or gel formulations, owing to its cationic nature. 

The growing demand for natural preservative alternatives has 

driven research into chitosan-based products with 

antimicrobial properties. With antifungal, antibacterial, and 

antiviral properties that have drawn interest from the food 

sector, it is regarded as a safe biopolymer that can be used 

orally. Among the many applications of chitosan in agriculture 

are soil enrichment, foliar spraying, seed coating, hydroponic 

supplementation, and addition to plant tissue culture media. 

Among these methods, seed coating and foliar spraying are 

especially beneficial. Chitosan is a valuable component to 

produce edible antibacterial films due to its unique properties 

[118]. 
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Figure 4. Structure of lysozyme (modified from Wu et al) [89]. 

 

Figure 5. The permitted organic acids used in the food industry, their  structural formula and pKa values (modified from 

Sorathiya et al) [98]. 
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Figure 6. Chitosan [poly-(b-1→ 4)-2-amino-2-deoxy-D-glucopyranose)].

As a nontoxic, antibacterial biopolymer, chitosan has shown 

promise as a useful matrix for edible films that contain 

essential oils [119, 120]. 

2.6. Allyl isothiocyanate 

Allyl isothiocyanate (AITC) results from the enzymatic 

hydrolysis of sinigrin, as shown in Figure 7. It is one of many 

isothiocyanate derivatives found in plants and is produced 

when the enzyme myrosinase breaks down glucosinolates, 

which are sulfur-containing secondary metabolites that are 

present only in the plant order Brassicales. Myrosinase (EC 

3.2.3.147), the only glucohydrolase known to be able to break 

the C (1)-S bond of glucosinolates, typically coexists with 

glucosinolates in nature [121, 122]. Glucosinolates are divided 

into different groups based on the alkyl group attached to the 

isothiocyanate functional group, with sinigrin (2-propenyl 

glucosinolate) serving as the precursor for AITC [123, 124]. 

AITC exhibits potent antimicrobial activity against human 

pathogens in both liquid media and vapor form, particularly 

against bacteria with multidrug-resistant phenotypes, for 

which new therapeutic options are urgently needed. For 

example, its antimicrobial effects have been documented 

against such organisms as P. aeruginosa, S. aureus, E. coli 

CECT 434, E. coli O157:H7, and C. jejuni [125]. Inhibiting 

thioredoxin reductase and acetate kinase, interfering with the 

sulfhydryl groups of enzymes, and damaging the integrity of 

the E. coli cell membrane are the mechanisms of action. 

Notably, the ability of AITC to inhibit bacteria at all growth 

stages and its strong vapor-phase activity supports its potential 

use in food preservation [126]. 

2.7. Lactoferrin 

Lactoferrin is a member of the nonheme iron-binding 

protein family. Its amino acid sequence shows 51% high 

similarity across different species. The N- and C-lobes are 

joined by an α-helix in a polypeptide chain [127], and each 

lobe has a high affinity for binding a single ferric ion. Because 

this binding is reversible, lactoferrin can exist in either an iron-

free or iron-bound state. When iron binds, a conformational 

change occurs, creating a ‘closed’ protein that is more resistant 

to proteolysis than the open, more flexible, iron-free form. 

Among the primary proteins found in all exocrine secretions, 

such as colostrum, milk, tears, saliva, seminal and 

gastrointestinal fluids, nasal and bronchial mucosa, and 

plasma, lactoferrin is a naturally occurring substance in 

humans. The newborn gut microbiota is initiated, developed, 

and in part shaped by breast milk, the main source of 

lactoferrin in the infant gut. Several short peptides are 

produced and characterized by proteolytic enzymes [128]. 

Upon enzymatic hydrolysis of the amino acid sequences of 

oligopeptides from different animals, several significant 

features, such as the highly cationic nature of the peptides and 

the retention of hydrophobic residues, such as valine and 

tryptophan, are observed across species. The lactoferrin amino 

acid sequences of the three mammalian species are shown in 

Figure 8.  

Lactoferrin has antibacterial, antiviral, antifungal, 

immunoregulatory, and anti-inflammatory properties. Other 

studies emphasize its role in promoting fibroblast and 

keratinocyte proliferation and migration, which are essential 

for wound healing because they modulate inflammatory 

responses and regulate the activity of these cells. Additionally, 

it supports the granulation phase by balancing fibroblast 

functions, including hyaluronic acid synthesis and collagen 

breakdown [129]. 

2.8. Grapefruit seed extract  

Grapefruit seed extract is a commercial product made 

from the seeds and pulp of grapefruit (Citrus paradisi Macf.), 

a subtropical fruit tree in the Rutaceae family.  
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Figure 7. Proposed mechanism of allyl isothiocyanate biosynthesis via Myrosinase-catalyzed sinigrin hydrolysis. 

 

Figure 8. Lactoferrin amino acid sequences in humans, cows, and goats (where tryptophan (W), methionine (M), and cysteine 

(C) are held steady) (modified from Bruni et al) [129]. 

 

Figure 9. 3D Structure of some phenolic compounds found in grapefruit seed extract. 
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Grape seed (V. vinifera L.) extraction via a 20 % ethanolic 

solution and/or hot water yields large amounts of polyphenolic 

compounds (Figure 9), such as procyanidins, including 

dimeric, trimeric, and tetrameric forms; epicatechin; 

epicatechin-3-O-gallate; flavanols; and catechins. It also 

contains small amounts of fat, fiber, sugars, organic acids such 

as citric and malic acids, and protein [130-132]. 

The antibacterial properties of extracts from grapefruit seeds 

have been documented in many studies, and their effectiveness 

is linked to flavonoids such as naringin, quercetin, kaempferol, 

tocopherols, limonoids, citric acid, and other compounds 

[133]. Grapefruit seed extract can effectively inhibit various 

bacteria responsible for food poisoning and has antioxidant 

properties. The presence of active substances such as 

polyphenols, tocopherols, citric acid, ascorbic acid, and 

numerous others is responsible for these biological actions. 

When applied to actual foods, grape seed extract has a wide 

range of antibacterial activities against various microbial 

strains. It exhibits strong antimicrobial activity against a 

variety of foodborne pathogens, such as Salmonella spp. and 

Listeria monocytogenes in fresh vegetables, as well as 

Candida albicans, Pseudomonas aeruginosa, and Escherichia 

coli O157:H7. Additionally, grapefruit seed extract has 

demonstrated efficacy in inhibiting Clostridium perfringens, 

which was inoculated into sous-vide chicken products. 

Foodborne pathogens present in a variety of fruits, vegetables, 

meats, and seafood can be stopped from growing. The extract 

also has antifungal activity by causing spore contents to leak 

and damaging the spore's cell wall and membrane [134-136]. 

Its application extends beyond direct antimicrobial use in 

foods; it can also be used as an edible coating or film, such as 

those made from starch, alginate, or chitosan combined with 

natural plant antimicrobial extracts. These edible antimicrobial 

films or coatings help items last longer on the market by acting 

as barriers against foodborne infections [137]. 

2.9. Date seed extracts 

For many individuals residing in dry and semiarid places 

across the world, date palm is an essential social, 

environmental, and economic resource [138]. Dates are used 

to make a wide range of goods, including date paste, 

marmalade, chocolate, sweet sweets, animal feed, date syrup, 

and numerous kinds of bread. The construction of boats, the 

roofing of rural homes, the paper and wood industries, and the 

fiber industry all use other date palm byproducts. Fans and 

straw hats are among the handicrafts made from leaves [139]. 

However, date seeds have become an environmental concern, 

with tons discarded daily as waste or mainly used as animal 

feed [140, 141]. The main constituents of the seed are dietary 

fiber, protein, carbohydrates, phenols [142], and metals such 

as potassium, magnesium, calcium, phosphorus, sodium, and 

iron, which all have biological activities such as antiviral, 

antibacterial, and antioxidant properties [143]. Additionally, 

date seeds are a great source of oil that is rich in phenolic 

compounds, tocopherols, and phytosterols [144-147]. 

Extensive research on date seed oil reveals its content of 

vitamins C, E, and beta-carotene, minerals, and fatty acids, 

making it valuable for food formulations [148, 149], and it 

offers a promising source of healthful nutrients for humans 

[150]. Recently, growing interest in the health benefits of date 

seeds has spurred numerous in vitro and animal studies, along 

with the identification and quantification of various 

phytochemicals. With relatively low concentrations of capric, 

palmitoleic, linolenic, and gadoleic acids, the oil is composed 

of fatty acids such as oleic, linoleic, palmitic, myristic, and 

lauric acids [151, 152]. Oils high in oleic acid are particularly 

valued for their stability and nutritional importance. Oleic acid 

is regarded as a vital unsaturated fatty acid in foods because of 

its role in preventing cardiovascular diseases, reducing blood 

cholesterol, providing high oxidative stability, and providing 

overall health benefits [153]. Additionally, research shows that 

lauric acid has antibacterial qualities, a better profile than trans 

fats, and a protective effect against prostatic hyperplasia [154-

157]. Date seed oil is a promising dietary product with 

demonstrated antioxidant effects, especially if extracted 

through eco-friendly and contamination-free methods. 

Research shows that slow pyrolysis of date seeds results in the 

production of biologically active compounds such as 

triterpenoids and steroids. Owing to its stearic, palmitic, and 

oleic acid contents, this oil can be used to formulate anti-

inflammatory medications. Its main active constituents are 

enhancers that promote the absorption of nonsteroidal anti-

inflammatory drugs through the skin [158]. These studies 

highlight how crucial it is to incorporate antioxidant-rich 

natural materials into a variety of matrices to create 

antimicrobial films that work well for food packaging. Using 

date seed extracts, polymeric films containing carboxymethyl 
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chitosan and carboxymethyl starch were prepared and assessed 

as antimicrobial agents against a variety of microbial species. 

With testing intervals of 15 h, 12 h, 18 h, 15 h, 21 h, and 24 h, 

the films notably demonstrated considerable inhibition zones, 

ranging from 22 ± 0.49 mm to 35 ± 0.76 mm, against bacteria 

such E. coli O157, S. typhimurium, L. monocytogenes, S. 

aureus, R. oryzae, and A. niger without causing any harmful 

effects. The study recommended using such materials for 

packaging fruits and vegetables [159]. Alginate, a widely used 

marine polysaccharide, has become an attractive polymeric 

support because it is abundant, inexpensive, nontoxic, 

biocompatible, nonimmunogenic, biodegradable, and stable; it 

also has good emulsifying and film-forming properties and is 

used for packaging. Alginate films have a glossy appearance, 

are water-soluble, tasteless, odorless, and have good oxygen 

and grease barrier properties. Several food products, such as 

fruits, vegetables, meat, fish, and cheese, have benefited from 

the successful application of these alginate-based coatings 

[160]. Effective antioxidant films for food packaging made 

from alginate combined with date seed extracts were reported 

by Khwaldia et al. [159]. The inclusion of date extracts 

increased the water vapor barrier characteristics, tensile 

strength, and elongation of the films. In summary, date seeds, 

rich in active compounds, can be used to produce 

biodegradable coatings and films with improved functionality 

and environmental benefits. Preliminary results demonstrate 

their effectiveness in preserving different food items. 

Nevertheless, further research is necessary to optimize 

formulations, functional properties, and sensory acceptance 

[161, 162]. 

3. Functionalized antimicrobial PVC films 

PVC is one of the most widely used plastic packaging 

materials for food packaging [163] because it readily produces 

desirable features and offers many benefits, including low 

cost, wide availability, high flexibility and strength, ease of 

heat sealing, chemical inertness, high permeability, and 

excellent self-sticking properties [26]. According to 

Leadbitter, a thorough analysis of PVC use in food packaging 

applications includes information on the primary chemicals 

used as well as regulatory frameworks for additive selection 

that consider waste management, environmental concerns, 

safety, and health [163]. However, PVC production raises 

significant environmental issues, especially during the 

synthesis of 1,2-dichloroethane, which produces toxic dioxins. 

To address this problem, biobased approaches have been 

developed that convert bioethanol from sugarcane into 

bioethylene, which can then be used to produce vinyl chloride 

monomers via traditional organic methods. These materials 

offer important barrier properties against oxygen and water 

vapor, making them suitable for storing specific food products. 

PVC has permeability values of 1–2 × 10¹³ cm³∙cm/cm²·s·Pa 

for water and oxygen, respectively, and has a tensile strength 

of 56.5 MPa and an impact strength of 0.91 J/cm, with a 

thermal stability characterized by Tg = 80°C and Td = -250°C 

at room temperature [164-167]. PVC films are used for meat 

packaging, such as poultry and raw fish, to extend shelf-life 

and retain moisture due to their good thermoforming 

capabilities [168]. They are also employed as standard 

materials for packaging fruits and vegetables, including stored 

bananas (cultivars Saucier), strawberries, apples (cv Fuji), 

broccoli, mushrooms, and sapota, owing to their ability to 

reduce dopamine content, retain aroma, and lower respiration 

rates [169-171]. Nonetheless, the nondegradable nature of 

PVC limits its use as a packaging material, and surface 

modifications are often needed to reduce contamination risks 

and meet the demands of effective packaging materials. PVC 

combined with silver nanoparticles has been tested in chicken 

and turkey meats at various concentrations, times, and 

temperatures, with silver migration into food matrices 

remaining within permissible limits (0.03–8.4 mg/kg) [172, 

173]. Similarly, a highly antimicrobial PVC film was 

developed by bonding PVC to polyhexamethylenediamine 

guanidine, followed by the grafting of mercaptopropyl 

trimethoxysilane and aminopropyl triethoxysilane with 

glutaraldehyde as a crosslinker. This biofilm effectively 

combats bacteria through direct contact [174]. We introduced 

new antimicrobial materials, incorporating Cu(I) and Cd(II) 

complexes of bisacylthiourea derivatives, into PVC films. 

Compared with standard antibiotics, the PVC/Cd composite 

showed significantly superior antibacterial activity against 

resistant species, outperforming the PVC/Cu variant. These 

materials could be adapted with minor modifications for use in 

food packaging as a novel approach to antimicrobial surface 

engineering in the food industry [175]. Films containing 

organic or inorganic antimicrobial agents such as EDTA, 

fungicides, parabens, and other chemicals have been 
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developed for food packaging because of their ease of 

production and high performance [176-181]. For example, 

PVC-based films with quercetin and silver nanoparticles were 

highly effective at inhibiting bacteria such as E. coli, S. 

Typhimurium, and L. monocytogenes [182]. Assis et al. [181] 

recently examined the antimicrobial activity of PVC-silica 

(SiO₂)/AgNPs composite films for papaya packaging and 

reported the complete elimination of S. aureus, E. coli, and 

Penicillium funiculosum after 24 hours. Grafting copolymers 

onto PVC urinary catheters improves biocompatibility and 

provides binding sites for lysozyme, reducing bacterial 

adhesion and biofilm formation—lysozymes reduce 

Staphylococcus aureus adhesion [183]. Extracts from C. 

reinhardtii exhibit antimicrobial activity against bacteria and 

fungi, suggesting their potential for antimicrobial packaging 

applications. [26] Blending algal extracts with PVC yields 

bioplastic films that are promising eco-friendly alternatives to 

conventional plastics [26]. Algal biomass contains bioactive 

compounds, including lipids, proteins, carbohydrates, and 

fatty acids, making it a valuable source of biodegradable 

plastics [184, 185]. 

4. Application of antimicrobial PVC films in 

food packaging 

To improve food safety, prolong shelf-life without 

compromising quality, and prevent certain bacteria from 

growing on food, antimicrobial packaging is essential. When 

the microbiological count reaches 10^7 CFU/g to 10^8 CFU/g, 

which is the standard for shelf-life indication, food is deemed 

ruined. The incorporation of essential oils, plant extracts, 

enzymes, chitosan, and bacteriocins into natural antimicrobial 

packaging has been the subject of numerous investigations 

[186]. By providing consumers with crucial information on 

food freshness and spoilage, the incorporation of natural 

antimicrobial agents into packaging materials enhances 

packaging technology [187]. Today, customers want foods 

that are free of chemicals and preservatives, increasing the 

demand for natural antimicrobials to purify food and increase 

shelf-life. Many natural chemicals with a broad antibacterial 

spectrum against a wide range of microbes can be found in 

plants, herbs, and spice extracts [188]. The chemical stability, 

kinetics, and mechanisms of action of these natural 

antibacterial agents are still unknown, although they also 

possess antioxidant properties used in some medications. 

Environmental factors affect an enzyme's antimicrobial 

activity; for example, lysozyme is extremely sensitive to pH 

and temperature, which can reduce its effectiveness against 

Gram-negative bacteria. Bacteriocins are small molecules 

produced by bacteria that inhibit the growth of similar or 

closely related strains. Edible films, coatings, and plastic 

wraps are directly treated with certain bacteriocins, such as 

lacticin, nisin, and EDTA [11]. Other products, such as 

pediocin and propionicin, are incorporated into food or 

packaging systems to prevent microbial growth. The 

bacteriocins produced by live bacteria during food 

fermentation are added to food packages as probiotics to 

increase their antimicrobial properties. Immobilized 

bacteriocins, such as nisin and lacticin, are incorporated into 

polyethylene or polyamide pouches to protect against 

Lactococcus lactis, Listeria innocua, and Staphylococcus 

aureus in refrigerated cheese and ham, thereby extending 

shelf-life [189]. In addition to interacting with food, the active 

ingredients in packaging help protect the area between the 

food and the package [190]. Adding active substances to 

natural and synthetic polymers through coating or film 

development is a useful method for extending the shelf-life of 

food. The physical and mechanical properties of the polymer, 

as well as the film thickness, affect the effectiveness of 

antimicrobial packaging. Notably, the hue and opacity of 

polymers can be altered by the addition of plant extracts [191]. 

The characteristics of polymers are also altered by the addition 

of antimicrobial agents [192]. By altering the polymer 

structure, which influences diffusion or initiates direct 

interactions with antimicrobials, polymer additives such as 

stabilizers, plasticizers, lubricants, and fillers can adversely 

affect antimicrobial activity [193]. The chemical composition, 

mechanism of action, spectrum of activity, bacterial growth 

rate, and physiological conditions of the target 

microorganisms are among the variables that affect the 

integration of antimicrobial drugs into the polymer matrix. 

Particularly important are diffusion kinetics, which dictate the 

release of antibacterial chemicals from the polymer [194]. 

To obtain a PVC antimicrobial material, PVC must be 

modified to reduce contamination risk when used in food 

packaging. For food packaging, PVC needs to be plasticized 

with plasticizers (up to 30%), and palm oil olein, a nontoxic 
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edible triglyceride, must be attached to the PVC backbone to 

create a suitable antimicrobial film for packaging applications 

[195]. Attaching a biocide agent to the surface is one approach 

to produce an antimicrobial film [196], as demonstrated by 

incorporating antibiotics such as nisin or triclosan into PVC 

products [197, 198]. Sodium ampicillin, an antibiotic, was 

successfully incorporated into PVC from a DMF solution, and 

the resulting film had antibacterial properties against P. 

aeruginosa, K. pneumoniae, S. aureus, and E. coli. The DMF 

film shows strong antibacterial activity due to the ease of 

antibiotic access afforded by its morphology within the PVC 

matrix [199]. Additionally, triclosan was incorporated into 

PVC [200], and its antibacterial efficacy against S. aureus and 

E. coli was examined and compared with that of real PVC 

sheets containing silver. The results highlighted the 

importance of the hydrophilicity of the PVC surface for 

bacterial adhesion. Highly antimicrobial PVC films were 

prepared by blending equal parts of PVC and silkworm cocoon 

waste (1:1 w/w) and using moringa seed oil as a biobased 

plasticizer, with or without silver nanoparticles [199]. Another 

plasticizer derived from soybean oil and glycerol, a formal 

vegetable oil integrated into PVC, has shown sustainable and 

eco-friendly plasticizing properties and considerable 

antibacterial efficacy against common infections, including 

Staphylococcus aureus and Escherichia coli. The resulting 

film was suitable for food packaging purposes [201]. The 

effects of nanoclay and an active agent, catechin lysozyme, on 

PVC-based film properties were also studied. The microbial 

assessment revealed that the composite film had 5. 74 log 

CFU/g after 7 days of storing pork meat. For yeasts and molds, 

a similar count of 6. A total of 6.82 log CFU/g was observed 

on the PVC film. 

5. Migration of chemicals into food matrices 

from packaging materials 

When chemicals such as plasticizers, solvents, and 

stabilizers move from packing materials into food, it is referred 

to as migration. This can occur because of physical, chemical, 

or environmental factors and may affect consumer health and 

food safety [202]. Thus, ensuring food safety and fulfilling 

regulatory requirements requires an understanding of 

migration [203]. Plastic components, inks and coatings, 

additives, plasticizers, and antioxidants are examples of 

chemical substances found in packaging materials. Numerous 

physical and chemical factors affect the migration of 

chemicals from food packaging into food products. 

Temperature is a crucial factor; higher temperatures can 

accelerate migration by encouraging the chemicals in the 

packaging to diffuse into the food. This is especially crucial 

for storage and transit under less-than-ideal circumstances. 

Various processes, including migration, leaching, and 

chemical reactions, can transfer contaminants from packaging 

materials to food when the packaging materials come into 

direct contact with food. The main mechanisms of migration 

include diffusion [204], which is the most common 

mechanism; volatilization [205], which occurs when volatile 

chemicals in the packaging evaporate; permeation [206], 

where small molecules pass through the packaging material 

itself; convection [207], which involves the movement of 

chemicals such as gases or liquids in packaging; and chemical 

reactions [208] between the food and the packaging materials. 

Interestingly, package structural elements, such as 

multilayered films, can serve as barriers, restricting chemical 

diffusion and lowering migration rates. There is no 

relationship between migration and the presence of recycled 

substances. International organizations such as the food and 

drug administration (FDA) and the European food safety 

authority (EFSA) established guidelines for choosing 

simulants and testing parameters [209] to ensure that 

migration tests accurately represent real-world conditions. 

6. Regulations of natural antimicrobials 

in the food industry 

International regulations strictly regulate food additives 

[210], yet nations frequently dispute whether additions are 

safe, what amounts are allowed, and what applications are 

permitted. For example, only a small number of substances, 

primarily organic acids, are now authorized as food 

preservatives in Europe. To license food additives for human 

consumption, a rigorous procedure is followed. When 

requesting approval for a novel additive, an applicant gives 

comprehensive scientific safety information, together with a 

formal request to the European Commission, the EU's 

executive branch. After the application is accepted, the 

Commission requests that the European Food Safety Authority 

(EFSA) examine whether these substances are safe for use. In 
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addition to reviewing current additives with new scientific 

data or evolving regulations, the EFSA also assesses the safety 

of novel additives before approval [211]. Comparably, in 

China, the only industry group with the authority to assess and 

assist the Chinese government in regulating food and food 

additives is the China Food Additives Association (CFAA) 

[212, 213]. In the United States, the Food and Drug 

Administration (FDA) evaluates unapproved food additives 

for safety before approving them. This evaluation considers 

the usual intake, possible immediate and long-term health 

consequences, and additional safety considerations. The FDA 

has regulatory authority over food additives, as stated in its 

Guidelines for Industry. Once approved, the FDA issues 

regulations that specify the types of foods it can be used in, the 

maximum allowable quantities, and proper labeling, all of 

which are outlined in Title 21 of the Code of Federal 

Regulations. However, under FDA rules, the Environmental 

Protection Agency (EPA) has established guidelines for 

pesticide compounds and residues in food. Additionally, the 

FDA regulates antimicrobials used in food packaging as food 

additives and does not classify them as "pesticide chemicals" 

[214].  

7. Obstacles and restrictions in the use 

of natural antimicrobials in the food 

industry 

The growing customer desire for chemical-free food items 

has prompted food firms to use natural substances, as studies 

have demonstrated the broad and promising effects of natural 

antibacterial agents. Natural antimicrobials have drawbacks 

and limitations, including effects on sensory attributes such as 

flavor, color, and texture [215]. Since these compounds are 

thought to be safer and more ecologically friendly than 

synthetic chemical preservatives, regulatory and safety 

concerns [216] are receiving increased attention. Although 

many natural antimicrobials have received GRAS designation, 

regional differences in food safety regulations have caused 

inconsistencies in the licensing of specific compounds, 

allowable concentrations, and food applications. Certain 

natural antimicrobials can cause allergic reactions, adverse 

effects, or disrupt gut flora if used excessively or for a long 

time. The addition of natural antimicrobials can also alter the 

flavor, aroma, and appearance of food. To solve these issues, 

more research is necessary to develop methods for isolating 

and purifying natural antimicrobial agents, assessing their 

safety, and creating consistent regulatory frameworks for their 

safe and effective use. Significant challenges in preserving 

antimicrobial efficacy also arise from stability and shelf-life, 

as many bioactive substances break down quickly in the 

presence of environmental factors such as light, heat, oxygen, 

and pH. Due to their volatile nature, essential oils often lose 

effectiveness during processing and storage, thereby 

decreasing their ability to inhibit microbial growth. Novel 

delivery methods have been developed to protect natural 

antimicrobials from environmental degradation, preserving 

their bioactivity and extending their shelf-life. These methods 

include edible coatings, nano-encapsulation, and 

microemulsions. Since extracting natural antimicrobials often 

involves costly, time-consuming, and technically complex 

processes, cost and scalability remain major barriers to 

widespread use, limiting large-scale industrial production. 

Geographical and seasonal variations in the availability of raw 

materials make standardization even more difficult and affect 

the reliability of the supply and the efficacy of the final 

product. In price-sensitive markets, natural antimicrobials are 

less viable because of their high production costs. To 

overcome these obstacles and promote the commercial 

application of natural antimicrobials, cooperation between 

academic institutions, industry stakeholders, and regulatory 

bodies is essential [39]. A synergistic approach with other 

preservation technologies is thought to be advantageous to 

prevent adverse effects from high concentrations of these 

substances [42]. To enhance the use of these antimicrobials in 

food systems without harming the organoleptic properties of 

food products, further research on extraction methods, 

application strategies, and optimal dosages is necessary [46]. 

8. Conclusion 

Applications for antimicrobial compounds in food, 

particularly food packaging, have been around for some time. 

These include extending the shelf-life of packaged food and 

preventing the growth of germs. The chemical composition, 

mechanism of action, range of activity, rate of bacterial 

growth, and physiological conditions of the targeted 

microorganisms are among the parameters that influence the 

incorporation of antimicrobial compounds into the polymer 

matrix. The production of natural antimicrobial films involves 
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either direct coating or the incorporation of synthetic or natural 

antimicrobial agents into the film. Several natural antibacterial 

agents, such as essential oils, bacteriocins, lysozymes, organic 

acids, chitosan, grapefruit seed extract, AITC, and the primary 

flavoring ingredients found in cruciferous plants, date seeds, 

and polysaccharides, are integrated into food packaging films. 

Although many natural antimicrobial agents have received 

GRAS designation, cost and scalability remain important 

challenges to increasing their use. Geographical and seasonal 

variations in the availability of raw materials make 

standardization even more difficult and affect the reliability of 

the supply and the efficacy of the final product. In price-

sensitive markets, natural antimicrobials are less viable due to 

their high production costs. In this work, we introduced date 

seeds as promising, inexpensive, and safe possible prototypes 

for creating antimicrobial food packaging films using these 

well-known antimicrobial agents. The primary components of 

date seeds include fiber, protein, carbohydrates, phenols, and 

metals; these substances have a variety of biological 

properties, including antiviral, antibacterial, and antioxidant 

properties. Furthermore, dates are used to make a wide range 

of goods, including date paste, marmalade, chocolate, sweet 

sweets, animal feed, date syrup, alcohol, and several kinds of 

bread. In addition to being a good source of oil that is high in 

phenolic compounds, tocopherols, phytosterols, date seeds are 

also useful for food formulations because of their content of 

minerals, fatty acids, beta-carotene, and vitamins C and E. 

Thus, the use of fruit byproducts to create antimicrobial films 

is a great way to repurpose these residues, utilize their 

bioactive chemicals, reduce disposal issues, and support the 

circular economy concept. Thus, a natural product that is rich, 

valuable, and effective can be used to create biodegradable 

films and coatings that have improved functionality and 

environmental benefits. However, further research is needed 

to enhance formulations, functional qualities, and sensory 

acceptance and to determine the GRAS designation. 

 

Figure 10. (a) Representative chemical structures found in date seeds, (b) a proposed model of a PVC film containing several 

oil constituents found in date seeds. 
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One of the earliest polymers used in food packaging was PVC, 

which replaced many traditional materials like glass and 

various thermoplastics. Owing to its exceptional 

cost/performance ratio, ease of printing, and compatibility 

with a variety of additives due to its polar nature, PVC is a 

great choice for preserving food freshness and extending shelf-

life. It can also block gases such as oxygen and water vapor. 

PVC has worldwide approval for use in food contact 

applications, and many PVC/additive blends are already listed 

on European incomplete additive lists, including those 

outlined in EC Directive 2002/72 and its subsequent 

amendments. Blending various extracts with PVC yields 

bioplastic sheets, which are promising eco-friendly 

replacements for traditional plastics. Generally, using 

plasticizers is essential to make flexible PVC biofilms for food 

packaging, and many well-documented PVC plasticizers are 

available. Notably, because of the potential presence of 

different chemicals and their varying migration rates, Zero 

Waste Europe recently advised against using PVC in contact-

sensitive applications like food packaging. However, 

removing PVC from packaging will restrict consumer choices 

without providing any additional environmental benefits. This 

study aims to differ from the general literature by addressing 

recent advances that incorporate various natural antimicrobial 

agents, which are known to be safe for the food industry, into 

the PVC matrix to create effective antimicrobial films and 

their application in food packaging. This work provides a 

thorough summary of recent studies in antimicrobial food 

packaging, with a focus on the application of antimicrobial 

agents and PVC-based films. Date seeds are both nutritious 

and therapeutic, and making bioactive films from their 

byproducts is a promising way to use them and lessen their 

disposal issues. A proposed model of a PVC film containing 

representative chemical structures, such as phytosterols, 

tocotrienols, carotenoids, flavonoids, phenolic acids, and 

phytoestrogens contained in date seeds, is shown in Figure 10. 

The use of the developed films to inhibit and prevent the 

growth of spoilage microbes during conservation and to 

extend the shelf-life of stored food will be reported soon. 
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