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Abstract

Polyvinyl chloride (PVC) is the most widely used material in food packaging production. It is approved for use in food contact
applications worldwide, and numerous PVC/additive mixtures are already listed on European incomplete additive lists, such as
those described in EC Directive 2002/72 and its following amendments. However, the use of PVC in contact-sensitive applications,
such as food packaging, as advised by the Zero Waste Europe office, raises serious concerns. However, phasing out PVC in
packaging limits consumer choice without providing environmental benefits. Currently, common natural antimicrobials found in
food packaging include lysozymes, organic acids, bacteriocins, essential oils, chitosan, grapefruit seed extract, allyl isothiocyanate,
and polysaccharides. The production of natural antimicrobial films involves either direct coating or the incorporation of synthetic
or natural antimicrobial agents into the film. Although many natural antimicrobial agents have received a generally recognized as
safe (GRAS) designation, cost and scalability continue to be significant challenges to expanding their use. In price-sensitive
markets, natural antimicrobials are less practical due to their high production costs. Date seeds are considered potential prototypes
for developing novel, affordable, and safe antimicrobial films. They include bioactive substances with antiviral, antibacterial, and
antioxidant qualities. Additionally, date seeds are a source of oil rich in phenols, tocopherols, and phytosterols. This review
discusses the nature, biocompatibility, and properties of the most common antimicrobial agents in enriched PVC films. It also
emphasizes how date seeds can be used as organic microbiological materials to preserve food during packing. Since date seeds are

a low-value byproduct, their disposal is costly, making their utilization economically advantageous.
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1. Introduction polymeric films [1, 2]. Synthetic thermoplastic polymers are

. . ) the most popular packaging materials due to their numerous
The main cause of food spoilage and decay during post- . . . .
) . ) benefits, including high strength, heat sealability,
processing, transportation, and storage is the growth of . .
i ) transparency, and transfer resistance. Plastics are generally
foodborne illnesses and other well-known bacteria on food ) i
. . . affordable, offer good barriers to heat and oxygen, and resist
surfaces. One of the most promising active packaging . . )
L . L . tensile and tensile stresses [3]. Despite these advantages,
technologies involves the production of antimicrobial films by . . . .
. . . o . . increasing environmental concerns have prompted a review of
incorporating natural or synthetic antimicrobial agents into . . .
traditional packaging polymers. The goals of traditional food
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packaging are to keep food products safe, preserve quality, and
increase shelf life. Products derived from natural sources are
essential to current strategies for meeting consumer needs and
maintaining food quality throughout time. Most packaging
materials are petroleum-based from nonrenewable resources,
and synthetic plastics are not biodegradable. Since packaging
accounts for 30% to 40% of municipal solid waste, the amount
of solid waste generated poses an environmental challenge that
needs immediate attention. Many studies are ongoing to
address these issues by exploring ways to valorize and reuse
waste without harming the ecosystem. Various substances,
including metal ions, alcohols, ammonium compounds,
amines, organic and inorganic acids, and metals such as copper
and silver, have been researched [4, 5]. A suitable rate of
controlled release of antimicrobial agents during food
preservation is also made possible by packaging materials [6].
Natural substances such as antimicrobials and antioxidants are
effective in laboratory settings. When incorporated into food
packaging films, antimicrobial agents often prevent the growth
of unwanted microorganisms [7-9]. Natural antimicrobial
agents are becoming more popular because they are seen as
safe for use in the food industry. These include the possibility
of using antimicrobial enzymes such as lysozyme,
lactoperoxidase, chitinase, and glucose oxidase, as well as
bacteriocins such as nisin, pediocin, and lacticin, as
biopreservatives [10, 11]. Ensuring food safety involves
linking active antimicrobial coatings with the diffusion
behavior of the agents on food surfaces, where microbiological
degradation begins. In other words, the diffusion rate must
align with the product's concentration and shelf life, both of
Additionally,

antimicrobial agents should be released gradually during

which must remain within safe limits.

storage [12]. Importantly, research on how antimicrobials are
released from packaging films has focused on the diffusion
rate [13, 14] and biodegradability [15-18], which influence
antimicrobial diffusion within the polymer matrix. Numerous
studies have investigated the mechanisms of antimicrobial
[19-23], the diffusion of
[24-26], and
extensively covered topics such as migration testing,

release from plastic films
antimicrobials from packaging materials
nanomaterial safety, industrial scaling, and regulatory updates
[27-32]. Because of their inherent film qualities, such as

flexibility, transparency, and ease of processing, plastics are
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widely used in food packaging and antimicrobial food
packaging, and their use continues to grow. These qualities,
flexibility, transparency, and ease of processing, have led to a
sharp increase in plastic use for food packaging and
antimicrobial food packaging. These films are available in
oriented and unoriented types and are typically made by
blending PVC resin, plasticizers, and other additives. PVC is
permitted for use in food contact applications worldwide.
According to EC Directive 2002/72 and its updates, numerous
compounds routinely utilized in PVC are already on European
additive lists. Like other thermoplastics, PVC packaging can
be mechanically recycled at the end of its life, and recycling
facilities for bottles and trays are established across Europe.
PVC has also been combined with algae extracts to create
bioplastic films, which are potentially environmentally
friendly alternatives to traditional plastics [33]. Extracts from
C. reinhardtii demonstrate antimicrobial activity against
various bacteria and fungi, suggesting that they could be useful
in antimicrobial packaging [26]. Therefore, removing PVC
from packaging options would limit consumer choice without
providing additional environmental benefits. The primary
objective of this research was to explore the potential
integration of various natural antibacterial agents suitable for
the food industry into the PVC matrix to produce effective

bioplastic films.
2. Common natural antimicrobial agents

In modern medicine, natural substances, especially

secondary metabolites, are a significant source of

pharmaceuticals.  Antimicrobials can originate from
microorganisms, plants, or animals. Animal-based natural
antimicrobial agents include chelators such as chitosan,
lysozyme, and lactoferrin [34, 35]. Essential oils derived from
citrus fruit peels, seeds, bulbs, or pods of various plants are
known as plant-based antimicrobial agents [36, 37]. Similarly,
microbes produce inhibitory substances that antagonize
nearby pathogens [38]. Table 1 [39-41] presents classification
of natural antimicrobial agents, targeted bacteria, processes,
food applications, and limitations. Additional details on
microbial, plant, and animal origins, types, and uses can be
found elsewhere [42-47]. A few natural antimicrobials used in

food packaging are briefly discussed in the following sections.
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Table 1. Classification of natural antimicrobial agents according to their sources, targeted microbes, mechanisms, food applications, and

limitations.
T ted Microb
Microbial sources | Animal sources Plant sources arge e. ?cro e Mechanisms Limitations
(Applications)
. . . . Listeria, C. perfringens, S. aureus .
Bacteriocins Proteins Essential Oils Layered packaging Strong aroma /flavor
(Cheese, yogurt, cured meats)
Nisin. Pediocin (+) Gram bacteria Listeria, S. Limited spectrum
,etc ’ Lactoperoxidase, Plant extracts aureus Inflammation of cells against (-) positive
’ (Cheese, milk, seafood coatings) bacteria
o . . . S. , E. coli, P. j . 11 icity and
Pediocin Lactoferrin Lamiaceae families aureis . con aef’ugmosa Disrupt cell membrane 2 ergf:l?lm.y an
(Strawberries, raspberries, beef) solubility issues
Bacterial Cell . Mesophilic bacteri o
acterial - Lysozyme Fabaceae families CSOPATE bactena DNA damage pH sensitive
Products (Sprouts, cabbage)
S . . S. , Sal 11 . . Lipid interacti d
Organic acids Polysaccharide Asteraceae families aure.us atmonetia Mitochondria damage bt 1.n e?rac 19ns reduce
(Dairy products) the antimicrobial efficacy
L . . Pseud , A . . I t
Carbon dioxide Chitosan Cinnamomum verum seu om9nas eromonas Protein denaturation fopact on s.e nsory
(Fish fillets) properties
Hydrogen Peroxide Enzymes Rosmarinus vulgaris ( C}Slz (e);:g;a(i)rr}%?)?(lilmuits) Electrostatic disruption Shelf-life stability
. Lact idase, . Molds and t L > functi S
Reuterin actoperoxiaase Thymus vulgaris 0105 anc yeasts YSOS9m€S unetion Cost and scalability
Lysozyme (Bakery products) disturbance

2.1. Essential oils

Aromatic oil liquids containing up to sixty phenolic
components are called essential oils. They are mainly
produced synthetically or extracted from plants. Besides their
use as flavorings, fragrances, and medicines, they also have
antiviral, antibacterial, and insecticidal properties, among
other biological functions [35]. Data on the composition of
different essential oils have been published in several sources.
Depending on the harvest time and location, different plant
species can have varying essential oil compositions [36-38,
47]. Linalool, E-2-decanal, trans-cinnamaldehyde, carvacrol,
thymol, y-terpinene, p-cymene, a-pinene, d-tujone, bornyl
acetate, camphor, 1,8-cineole, y-pinene, a-tujone, y-eugenol,
and eugenyl acetate are major components of antimicrobial
essential oils. Figure 1 displays the structural formulas of some
components with strong antibacterial activity. Hydrophobicity
is a key property of essential oil components, enabling their
incorporation into bacterial cell membrane lipids and
mitochondria, disrupting their structure and increasing their
permeability [48, 49]. Many essential volatile plant oils are
known for their wide antimicrobial range; phenolic
compounds are generally the most effective. Numerous reports
have shown that essential oils are more effective at inhibiting

gram-positive bacteria than gram-negative bacteria. Examples
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of the former include clove, oregano, sage, vanillin, rosemary,
and thyme, whereas examples of the latter include oregano,
cinnamon, citral, and garlic oil [50]. Today, essential oils are
most commonly used in food applications, including
flavorings, fragrances, medications, dental root canal sealants,
antiseptics, and feed additives for weaned piglets and lactating
sows [51-54]. The potent effects of these oils are mainly due
to higher concentrations of secondary metabolites, such as
aldehydes, ketones, and phenolic compounds, which make
them highly lipophilic and volatile. Importantly, although
many essential oil components are approved for various uses,
some research indicates potential toxicity and irritation. For
example, during root canal therapy, eugenol, menthol, and
thymol have been reported to irritate oral tissues. Regular
exposure to certain constituents may cause allergic contact
dermatitis. Several oils used in aromatherapy, paramedicine,
and medicine have demonstrated spasmolytic or spasmogenic
effects. Therefore, more safety studies are necessary before
widespread or high-concentration essential oils can be used in
food. Additionally, direct addition to food products is limited
by their high volatility, hydrophobicity, tendency to lose
flavor, and susceptibility to oxidation and photooxidation.
Synergistic effects with other preservation strategies are
thought to be advantageous for reducing the negative effects

of large concentrations of these substances [42].
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2.2. Bacteriocins

substances are produced by bacteria, encoded by genes,
and synthesized by ribosomes. They have been explored as
promising natural sources of antimicrobial agents because of
tRevisedheir ability to antagonize other bacteria, especially
closely related species [55-59]. These natural peptides are
produced by bacteria living in competitive polymicrobial
environments and are of great interest as potential
antimicrobial agents against different bacterial, fungal, and
viral species [60], including resistant structures such as
bacterial biofilms [61, 62]. The diversity of bacteriocins
among bacteria provides a broad spectrum of activity [63-65].
Owing to this high diversity of bacteria, a wide variety of
bacteriocins have been identified, with some bacteria capable
of producing several types [66]. This broad range of
antimicrobial molecules enables numerous biotechnological,
industrial, and pharmaceutical applications [67]. Currently,
bacteriocins are used in two main sectors: combating
antibiotic-resistant bacteria and the agrifood industry. In the
first sector, bacteriocins were seen as weapons bacteria use to
survive, and their potential to fight drug resistance has gained
increasing interest [68, 69]. In the second, however, they are
rapidly broken down by proteolytic enzymes and are

considered safe for human use [54].

o o

R=H Eugenol
R = Ac Eugenyl acetate

Limonine y-terpinene  1,8-Cineole
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Based on their size, shape, chemical composition, or mode of
alteration, bacteriocins can be categorized into multiple types
[70]. Gram-positive bacteria produce four different classes of
bacteriocins [71]: small-sized (<5 kDa) lantibiotics, which
contain unusual amino acids such as dehydrated amino acids,
lanthionine, and 3-methyllanthionine, which form multiple
ring structures [72, 73]; nonantibiotics, which do not contain
unusual amino acids [74, 75]; members, which exhibit a linear
structure with bisulfide bridges (antilisterial bacteriocins) [76,
77]; antibiotic action, which requires the production of two-
(a/B), NC8,
lactococcin G, and lactococcin Q [78]; and small bacteriocins

peptide bacteriocins including plantaricin
associated with a leader peptide sequence, including one or
two cysteine residues, such as cystibiotics, thiolbiotics, and
other molecules such as lactococcin A, divergicin A, or
acidocin B. Finally, all the bacteriocin classes combine. The
third class of gram-positive bacteriocins includes large
peptides (>30 kDa),
helveticin J and V, which exhibit antibacterial activity via

such as zoocin A, lysostaphin, and

enzymatic mechanisms that disrupt the bacterial cell wall [79,
80]. The final type of gram-positive bacteriocin disrupts
bacterial cell membranes and is characterized by its lipid- or
carbohydrates, such as plantaricin S or leuconocin [81].

5

R=R'=H p-Cymene
R=O0OH,R'=H Carvarol
R=H,R'=0OH Thymol

2

a-Thujone Camphor

Figure 1. Chemical formulas of some essential oils containing components possessing high antibacterial properties.
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O R 0
o o 0
HO s OH M /\Hl\ /\)J\

NH, 2 NH,
R=H  Lanthionine Dehydroanaline Aminobutyric acid Dehydrobutyrine
R = CH; 3-methyllanthionine (Dha) (Abu) (Dhb)

Alanine (A), Arginine (R), Asparagine (N), Aspartic Acid (D), Cysteine (C), Glutamic Acid (E),
Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (1), Leucine (L), Lysine (K), Methionine (M),
Phenylalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y), Valine (V).

Figure 2. Examples of lanthionine-containing antibiotics found in bacteriocins made by Gram-positive bacteria (modified

from Garnizova et al) [88].

Colicin M

Alanine (A), Arginine (R), Asparagine (N), Aspartic Acid (D), Cysteine (C), Glutamic Acid (E),
Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (1), Leucine (L), Lysine (K), Methionine (M),
Phenylalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y), Valine (V).

Figure 3. Some antibiotic classes retrieved from bacteriocins produced by gram-negative bacteria (E. coli source) (modified
from Wu et al) [89].

139


https://www.sciparkpub.com/article-details/176
https://doi.org/10.62184/acj.jacj1000202523
https://doi.org/10.62184/acj.jacj1000202523

Review Article

On the other hand, gram-negative bacteria produce
bacteriocins, which are important antimicrobial peptides; most
of these peptides are isolated from Escherichia coli strains,
whereas other genera, such as Pseudomonas or Klebsiella, also
produce antimicrobial peptides [82]. This type of bactericide
can be divided into four categories: colicins, which are
bacteriocins with molecular weights greater than 10 kDa [83,
841; colicin-like bacteriocins, which are produced by bacteria
such as Klebsiella spp., klebicins, P. aeruginosa, and S-
pyocins [85]; microcins, which are small peptides (<10 kDa)
[86]; and phage tail-like bacteriocins [87, 88], which include
the production of a needle-shaped protein structure, genes
involved in peptide release, and regulatory genes. The
bacteriocins in this group are R- and F-pyocins produced by P.
aeruginosa that stopped membrane potential, leading to pore
formation in the bacterial membrane. The chemical structures
of certain bacteriocin components produced by gram-positive
and gram-negative bacteria are displayed in Figure 2 and
Figure 3, respectively, along with their amino acid sequences
[89, 90].

2.3. Lysozyme

Lysozyme, N-acetylmuramic hydrolase, is a tiny,
monomeric protein (Figure 4) that has nine negatively charged
amino acid residues, namely, asparagine and glutamine (7
Asp, 2 Glu), and its eight cysteine residues are joined by four
disulfide linkages and positively charged amino acid residues,
namely, lysine and arginine (6 Lys, 11 Arg). The B-(1, 1,4)-
glycosidic link that connects N-acetyl glucosamine and N-
acetylmuramic acid in bacterial cell wall peptidoglycans can
be broken down by lysozyme. Consequently, its antimicrobial
effectiveness against gram-positive bacteria has been
demonstrated in numerous reports. [91] Several varieties of
lysozymes are known, such as phage, bacterial, and plant
versions; however, based on structural differences, three main
families are recognized: c-type, g-type, and i-type. With 129
amino acids (14.3 kDa). The primary structure of c-type
lysozyme includes four unbroken disulfide bonds (6 C—127 C,
30 C-115 C, 64 C-80 C, and 76 C-94 C) formed by cysteine
residues, six tryptophan (W) residues (W—-62 and W-108),
three tyrosine (T) residues, and three phenylalanine (F)
residues [92, 93]. Lysozymes are commonly used by
pharmaceutical companies to treat bacterial, viral, and

inflammatory diseases. The peptidoglycan B-1,4-glycosidic
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bond is hydrolyzed, and muramidase activity degrades the
murein layer, decreasing the mechanical strength of the
bacterial cell wall and ultimately leading to bacterial mortality
[94]. The bactericidal action of lysozyme is mostly restricted
to certain Gram-positive bacteria because the outer surface of
Gram-negative bacteria usually has a protective coating of
(LPS) as well as
phospholipids that prevent lysozyme from accessing the

lipopolysaccharide proteins and
peptidoglycan layer [95]. Notably, lysozyme's ability to bind
to food additives, including food colors and antioxidants,
provides deeper insight into toxicity profiles and reveals
metabolic pathways of food ingredients [96]. Antimicrobial
enzyme immobilization in packaging is a promising approach
in active food packaging. This method can preserve the
activity of antimicrobials by preventing direct contact with
food components such as lipids and proteins. In contrast to
when the same quantity of lysozyme is merely dispersed or
sprayed on the food surface, immobilizing lysozyme in films
isolated from whey protein guarantees that it maintains a
minimum inhibitory concentration for a longer period at the
film's outer surface and/or the film—salmon interface. In
hydrophilic whey protein isolate (WPI) films, lysozyme and
polyacrylic acid can form a combination that enables gradual,
sustained release, long-term antibacterial activity, and
substantial food-preservation potential [97]. The effectiveness
of lysozyme-based antimicrobial packaging in food
preservation stems from its unique properties, particularly its

strong bacteriostatic activity against Gram-positive bacteria.
2.4. Organic acids

Organic acids are naturally occurring substances present
in various foods and are largely produced by microbes. They
are widely used as antimicrobial agents in the food industry
and have broad-spectrum antibacterial action [98, 99]. A
comprehensive review of the mechanisms of preservatives and
antiseptics revealed that organic acids are more effective than
mineral acids as antimicrobial agents [100]. Organic acids
constitute the third-largest global market for production and
are frequently utilized as antimicrobial agents in the food
sector [101]. Short-chain organic acids are often associated
with antibacterial activity because they have 10 or fewer
carbon atoms. Furthermore, several important characteristics
affect the effectiveness of organic acids, including their ionic

form, pKa value, molecular weight, minimum inhibitory
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concentration, the microbes they target, the food matrix
buffering capacity, and the length of time they are exposed to
the acid [102]. With pKa values of 3 to 5, most organic acids
with antibacterial properties are suitable for use in food
preservation [103]. Because of their low molecular weight and
straightforward molecular structure, which enable effective
penetration into microbial cells, they have significant
advantages when used as preservatives. After entering, they
disrupt intracellular functions, which eventually results in cell
death [104]. The food industry often uses approved organic
acids, whose structural formulas and pKa values are shown in
Figure 5. According to recent research, combining organic
acids with bioactive substances, such as plant extracts and
essential oils, increases antimicrobial activity, enhancing food
safety and quality. By preventing oxidation, enzymatic
breakdown, and microbial growth, this synergistic effect helps
maintain sensory qualities and nutritional value [105]. As food
preservatives, oil stabilizers, antimicrobials, active ingredients
in food packaging, and stabilizers during food processing,
organic acids serve a variety of purposes [106, 107]. For
example, tartaric acid derivatives used as antimicrobial agents
in packaging have demonstrated effectiveness against S.
maltophilia, P. syringae, P. aeruginosa, and X. beticola, with
inhibition observed within hours at 37°C. It has also been
shown that tartaric acid possesses antifungal properties against
Aspergillus fumigatus, Candida albicans, Malassezia furfur,
and Trichophyton mentagrophytes var. mentagrophytes [108].
2.5. Chitosan

Chitin (B-(1—4)-poly-N-acetyl-D-glucosamine) is one of
the most abundant natural polysaccharides found in insects,
lobsters, shrimp, and crabs. It is the main source of chitosan
(Figure 6), which is obtained by deacetylating the N-acetyl (N-
OAc) group of chitins [109, 110]. The antibacterial and
antifungal properties of chitosan have been extensively studied
and documented. Its antimicrobial properties are affected by
several factors. such as the origin, pH, molecular weight, and
degree of de-N-acetylation. Chitosan is soluble only in diluted
organic acids such as 1% acetic acid and formic acid at pH
values below 6.0. Around its pKa value, which is between pH
6 and 6.5, the solubility—insolubility transition takes place.

Below pH 6.0, the NH3*-C2 group of chitosan becomes

141

Advanced Carbon Journal, 2026, Vol. x, Iss. x, 135-164

DOI: 10.62184/acj.jacj1000202523

protonated, making it a water-soluble cationic polyelectrolyte.
Conversely, at pH values above 6.0, the NH.-C: group behaves
as a basic group, rendering the polymer insoluble. Therefore,
the solubility of chitosan primarily depends on the degree of
de-N-deacetylation along its main chain [111]. The
antimicrobial effects of chitosan can be extracellular,
intracellular, or both, depending on the target site. Its
molecular weight determines whether it can penetrate cell
surfaces to exert intracellular antimicrobial activity. Shorter-
molecular-weight chitosan can act both extracellularly and
intracellularly, impacting vital biological processes [112, 113].
Higher-molecular-weight chitosan, however, cannot typically
penetrate the cell wall or membrane; its antimicrobial activity
mainly involves altering cell permeability and blocking
nutrient and metal uptake externally [114]. Some studies
suggest that low-molecular-weight chitosan has stronger
activity against gram-negative bacteria, whereas high-
molecular-weight chitosan has a greater effect on gram-
positive bacteria [115]. This difference is attributed to
differences in cell wall structure: Gram-positive bacteria have
thicker peptidoglycan layers, whereas Gram-negative bacteria
contain more lipopolysaccharides [116]. Chitosan also has
notable fungicidal effects on various fungal pathogens that
affect plants and humans. The minimum inhibitory
concentrations vary depending on factors such as those
mentioned above, as well as the specific fungus targeted [117].
Owing to its excellent biocompatibility and low toxicity,
Chitosan has attracted significant interest as an excipient in
pharmaceutical and biomedical applications, particularly in
nanoparticle or gel formulations, owing to its cationic nature.
The growing demand for natural preservative alternatives has
driven research into chitosan-based products with
antimicrobial properties. With antifungal, antibacterial, and
antiviral properties that have drawn interest from the food
sector, it is regarded as a safe biopolymer that can be used
orally. Among the many applications of chitosan in agriculture
are soil enrichment, foliar spraying, seed coating, hydroponic
supplementation, and addition to plant tissue culture media.
Among these methods, seed coating and foliar spraying are
especially beneficial. Chitosan is a valuable component to
produce edible antibacterial films due to its unique properties

[118].


https://www.sciparkpub.com/article-details/176
https://doi.org/10.62184/acj.jacj1000202523
https://doi.org/10.62184/acj.jacj1000202523

Advanced Carbon Journal, 2026, Vol. x, Iss. x, 135-164

DOI: 10.62184/acj.jacj1000202523
Review Article

Figure 4. Structure of lysozyme (modified from Wu et al) [89].

o T u K e ¢ b e s Y
e GRSV SR TS

Acetic acid adipic acid Butyric acid Caprylic acid
(pKa 4.75) (pKa 4.43) (pKa 4.82) (pKa 4.89)

b +HPUEES BNV BN SR I, ¢
2 b LA

w

Citric acid Fumaric acid Lactic acid Malic acid
(pKa 4.76) (pKa 3.86) (pKa 3.03) (pKa 3.40)
& e g e P«
\ (\9 <% oy A\Vw*b o | A’;‘
& V/\-( . o (A 3
Propionic acid Gallic acid Succinic acid Tartaric acid
(pKa 4.87) (pKa 4.40) (pKa 4.61) (pKa 4.40)

Figure S. The permitted organic acids used in the food industry, their structural formula and pKa values (modified from
Sorathiya et al) [98].
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Figure 6. Chitosan [poly-(b-1— 4)-2-amino-2-deoxy-D-glucopyranose)].

As a nontoxic, antibacterial biopolymer, chitosan has shown
promise as a useful matrix for edible films that contain
essential oils [119, 120].

2.6. Allyl isothiocyanate
Allyl isothiocyanate (AITC) results from the enzymatic

hydrolysis of sinigrin, as shown in Figure 7. It is one of many
isothiocyanate derivatives found in plants and is produced
when the enzyme myrosinase breaks down glucosinolates,
which are sulfur-containing secondary metabolites that are
present only in the plant order Brassicales. Myrosinase (EC
3.2.3.147), the only glucohydrolase known to be able to break
the C (1)-S bond of glucosinolates, typically coexists with
glucosinolates in nature [121, 122]. Glucosinolates are divided
into different groups based on the alkyl group attached to the
isothiocyanate functional group, with sinigrin (2-propenyl
glucosinolate) serving as the precursor for AITC [123, 124].
AITC exhibits potent antimicrobial activity against human
pathogens in both liquid media and vapor form, particularly
against bacteria with multidrug-resistant phenotypes, for
which new therapeutic options are urgently needed. For
example, its antimicrobial effects have been documented
against such organisms as P. aeruginosa, S. aureus, E. coli
CECT 434, E. coli O157:H7, and C. jejuni [125]. Inhibiting
thioredoxin reductase and acetate kinase, interfering with the
sulfhydryl groups of enzymes, and damaging the integrity of
the E. coli cell membrane are the mechanisms of action.
Notably, the ability of AITC to inhibit bacteria at all growth
stages and its strong vapor-phase activity supports its potential
use in food preservation [126].

2.7. Lactoferrin

Lactoferrin is a member of the nonheme iron-binding
protein family. Its amino acid sequence shows 51% high
similarity across different species. The N- and C-lobes are

joined by an o-helix in a polypeptide chain [127], and each
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lobe has a high affinity for binding a single ferric ion. Because
this binding is reversible, lactoferrin can exist in either an iron-
free or iron-bound state. When iron binds, a conformational
change occurs, creating a ‘closed’ protein that is more resistant
to proteolysis than the open, more flexible, iron-free form.
Among the primary proteins found in all exocrine secretions,
such as colostrum, milk, tears, saliva, seminal and
gastrointestinal fluids, nasal and bronchial mucosa, and
plasma, lactoferrin is a naturally occurring substance in
humans. The newborn gut microbiota is initiated, developed,
and in part shaped by breast milk, the main source of
lactoferrin in the infant gut. Several short peptides are
produced and characterized by proteolytic enzymes [128].
Upon enzymatic hydrolysis of the amino acid sequences of
oligopeptides from different animals, several significant
features, such as the highly cationic nature of the peptides and
the retention of hydrophobic residues, such as valine and
tryptophan, are observed across species. The lactoferrin amino
acid sequences of the three mammalian species are shown in
Figure 8.

Lactoferrin  has  antibacterial, antiviral, antifungal,
immunoregulatory, and anti-inflammatory properties. Other
studies emphasize its role in promoting fibroblast and
keratinocyte proliferation and migration, which are essential
for wound healing because they modulate inflammatory
responses and regulate the activity of these cells. Additionally,
it supports the granulation phase by balancing fibroblast
functions, including hyaluronic acid synthesis and collagen

breakdown [129].

2.8. Grapefruit seed extract

Grapefruit seed extract is a commercial product made
from the seeds and pulp of grapefruit (Citrus paradisi Macf.),
a subtropical fruit tree in the Rutaceae family.
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Figure 7. Proposed mechanism of allyl isothiocyanate biosynthesis via Myrosinase-catalyzed sinigrin hydrolysis.
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Grape seed (V. vinifera L.) extraction via a 20 % ethanolic
solution and/or hot water yields large amounts of polyphenolic
compounds (Figure 9), such as procyanidins, including
dimeric, trimeric, and tetrameric forms; epicatechin;
epicatechin-3-O-gallate; flavanols; and catechins. It also
contains small amounts of fat, fiber, sugars, organic acids such
as citric and malic acids, and protein [130-132].

The antibacterial properties of extracts from grapefruit seeds
have been documented in many studies, and their effectiveness
is linked to flavonoids such as naringin, quercetin, kaempferol,
tocopherols, limonoids, citric acid, and other compounds
[133]. Grapefruit seed extract can effectively inhibit various
bacteria responsible for food poisoning and has antioxidant
properties. The presence of active substances such as
polyphenols, tocopherols, citric acid, ascorbic acid, and
numerous others is responsible for these biological actions.
When applied to actual foods, grape seed extract has a wide
range of antibacterial activities against various microbial
strains. It exhibits strong antimicrobial activity against a
variety of foodborne pathogens, such as Salmonella spp. and
Listeria monocytogenes in fresh vegetables, as well as
Candida albicans, Pseudomonas aeruginosa, and Escherichia
coli O157:H7. Additionally, grapefruit seed extract has
demonstrated efficacy in inhibiting Clostridium perfringens,
which was inoculated into sous-vide chicken products.
Foodborne pathogens present in a variety of fruits, vegetables,
meats, and seafood can be stopped from growing. The extract
also has antifungal activity by causing spore contents to leak
and damaging the spore's cell wall and membrane [134-136].
Its application extends beyond direct antimicrobial use in
foods; it can also be used as an edible coating or film, such as
those made from starch, alginate, or chitosan combined with
natural plant antimicrobial extracts. These edible antimicrobial
films or coatings help items last longer on the market by acting
as barriers against foodborne infections [137].

2.9. Date seed extracts

For many individuals residing in dry and semiarid places
across the world, date palm is an essential social,
environmental, and economic resource [138]. Dates are used
to make a wide range of goods, including date paste,
marmalade, chocolate, sweet sweets, animal feed, date syrup,
and numerous kinds of bread. The construction of boats, the

roofing of rural homes, the paper and wood industries, and the
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fiber industry all use other date palm byproducts. Fans and
straw hats are among the handicrafts made from leaves [139].
However, date seeds have become an environmental concern,
with tons discarded daily as waste or mainly used as animal
feed [140, 141]. The main constituents of the seed are dietary
fiber, protein, carbohydrates, phenols [142], and metals such
as potassium, magnesium, calcium, phosphorus, sodium, and
iron, which all have biological activities such as antiviral,
antibacterial, and antioxidant properties [143]. Additionally,
date seeds are a great source of oil that is rich in phenolic
[144-147].

Extensive research on date seed oil reveals its content of

compounds, tocopherols, and phytosterols
vitamins C, E, and beta-carotene, minerals, and fatty acids,
making it valuable for food formulations [148, 149], and it
offers a promising source of healthful nutrients for humans
[150]. Recently, growing interest in the health benefits of date
seeds has spurred numerous in vitro and animal studies, along
with the

phytochemicals. With relatively low concentrations of capric,

identification and quantification of various

palmitoleic, linolenic, and gadoleic acids, the oil is composed
of fatty acids such as oleic, linoleic, palmitic, myristic, and
lauric acids [151, 152]. Oils high in oleic acid are particularly
valued for their stability and nutritional importance. Oleic acid
is regarded as a vital unsaturated fatty acid in foods because of
its role in preventing cardiovascular diseases, reducing blood
cholesterol, providing high oxidative stability, and providing
overall health benefits [ 153]. Additionally, research shows that
lauric acid has antibacterial qualities, a better profile than trans
fats, and a protective effect against prostatic hyperplasia [154-
157]. Date seed oil is a promising dietary product with
demonstrated antioxidant effects, especially if extracted
through eco-friendly and contamination-free methods.
Research shows that slow pyrolysis of date seeds results in the
production of biologically active compounds such as
triterpenoids and steroids. Owing to its stearic, palmitic, and
oleic acid contents, this oil can be used to formulate anti-
inflammatory medications. Its main active constituents are
enhancers that promote the absorption of nonsteroidal anti-
inflammatory drugs through the skin [158]. These studies
highlight how crucial it is to incorporate antioxidant-rich
natural materials into a variety of matrices to create
antimicrobial films that work well for food packaging. Using

date seed extracts, polymeric films containing carboxymethyl
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chitosan and carboxymethyl starch were prepared and assessed
as antimicrobial agents against a variety of microbial species.
With testing intervals of 15 h, 12 h, 18 h, 15 h, 21 h, and 24 h,
the films notably demonstrated considerable inhibition zones,
ranging from 22 + 0.49 mm to 35 + 0.76 mm, against bacteria
such E. coli O157, S. typhimurium, L. monocytogenes, S.
aureus, R. oryzae, and A. niger without causing any harmful
effects. The study recommended using such materials for
packaging fruits and vegetables [159]. Alginate, a widely used
marine polysaccharide, has become an attractive polymeric
support because it is abundant, inexpensive, nontoxic,
biocompatible, nonimmunogenic, biodegradable, and stable; it
also has good emulsifying and film-forming properties and is
used for packaging. Alginate films have a glossy appearance,
are water-soluble, tasteless, odorless, and have good oxygen
and grease barrier properties. Several food products, such as
fruits, vegetables, meat, fish, and cheese, have benefited from
the successful application of these alginate-based coatings
[160]. Effective antioxidant films for food packaging made
from alginate combined with date seed extracts were reported
by Khwaldia et al. [159]. The inclusion of date extracts
increased the water vapor barrier characteristics, tensile
strength, and elongation of the films. In summary, date seeds,
rich in active compounds, can be used to produce
biodegradable coatings and films with improved functionality
and environmental benefits. Preliminary results demonstrate
their effectiveness in preserving different food items.
Nevertheless, further research is necessary to optimize
formulations, functional properties, and sensory acceptance
[161, 162].

3. Functionalized antimicrobial PVC films

PVC is one of the most widely used plastic packaging
materials for food packaging [163] because it readily produces
desirable features and offers many benefits, including low
cost, wide availability, high flexibility and strength, ease of
heat sealing, chemical inertness, high permeability, and
excellent self-sticking properties [26]. According to
Leadbitter, a thorough analysis of PVC use in food packaging
applications includes information on the primary chemicals
used as well as regulatory frameworks for additive selection
that consider waste management, environmental concerns,
safety, and health [163]. However, PVC production raises

significant environmental issues, especially during the
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synthesis of 1,2-dichloroethane, which produces toxic dioxins.
To address this problem, biobased approaches have been
developed that convert bioethanol from sugarcane into
bioethylene, which can then be used to produce vinyl chloride
monomers via traditional organic methods. These materials
offer important barrier properties against oxygen and water
vapor, making them suitable for storing specific food products.
PVC has permeability values of 1-2 x 10'* cm*cm/cm?-s-Pa
for water and oxygen, respectively, and has a tensile strength
of 56.5 MPa and an impact strength of 0.91 J/cm, with a
thermal stability characterized by Tg = 80°C and Td = -250°C
at room temperature [164-167]. PVC films are used for meat
packaging, such as poultry and raw fish, to extend shelf-life
and retain moisture due to their good thermoforming
capabilities [168]. They are also employed as standard
materials for packaging fruits and vegetables, including stored
bananas (cultivars Saucier), strawberries, apples (cv Fuji),
broccoli, mushrooms, and sapota, owing to their ability to
reduce dopamine content, retain aroma, and lower respiration
rates [169-171]. Nonetheless, the nondegradable nature of
PVC limits its use as a packaging material, and surface
modifications are often needed to reduce contamination risks
and meet the demands of effective packaging materials. PVC
combined with silver nanoparticles has been tested in chicken
and turkey meats at various concentrations, times, and
temperatures, with silver migration into food matrices
remaining within permissible limits (0.03-8.4 mg/kg) [172,
173]. Similarly, a highly antimicrobial PVC film was
developed by bonding PVC to polyhexamethylenediamine
guanidine, followed by the grafting of mercaptopropyl
trimethoxysilane and aminopropyl triethoxysilane with
glutaraldehyde as a crosslinker. This biofilm effectively
combats bacteria through direct contact [174]. We introduced
new antimicrobial materials, incorporating Cu(I) and Cd(II)
complexes of bisacylthiourea derivatives, into PVC films.
Compared with standard antibiotics, the PVC/Cd composite
showed significantly superior antibacterial activity against
resistant species, outperforming the PVC/Cu variant. These
materials could be adapted with minor modifications for use in
food packaging as a novel approach to antimicrobial surface
engineering in the food industry [175]. Films containing
organic or inorganic antimicrobial agents such as EDTA,

fungicides, parabens, and other chemicals have been
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developed for food packaging because of their ease of
production and high performance [176-181]. For example,
PVC-based films with quercetin and silver nanoparticles were
highly effective at inhibiting bacteria such as E. coli, S.
Typhimurium, and L. monocytogenes [182]. Assis et al. [181]
recently examined the antimicrobial activity of PVC-silica
(Si02)/AgNPs composite films for papaya packaging and
reported the complete elimination of S. aureus, E. coli, and
Penicillium funiculosum after 24 hours. Grafting copolymers
onto PVC urinary catheters improves biocompatibility and
provides binding sites for lysozyme, reducing bacterial
and Dbiofilm

Staphylococcus aureus adhesion [183]. Extracts from C.

adhesion formation—lysozymes reduce
reinhardtii exhibit antimicrobial activity against bacteria and
fungi, suggesting their potential for antimicrobial packaging
applications. [26] Blending algal extracts with PVC yields
bioplastic films that are promising eco-friendly alternatives to
conventional plastics [26]. Algal biomass contains bioactive
compounds, including lipids, proteins, carbohydrates, and
fatty acids, making it a valuable source of biodegradable

plastics [184, 185].
4. Application of antimicrobial PVC films in

food packaging

To improve food safety, prolong shelf-life without
compromising quality, and prevent certain bacteria from
growing on food, antimicrobial packaging is essential. When
the microbiological count reaches 1077 CFU/g to 10"8 CFU/g,
which is the standard for shelf-life indication, food is deemed
ruined. The incorporation of essential oils, plant extracts,
enzymes, chitosan, and bacteriocins into natural antimicrobial
packaging has been the subject of numerous investigations
[186]. By providing consumers with crucial information on
food freshness and spoilage, the incorporation of natural
antimicrobial agents into packaging materials enhances
packaging technology [187]. Today, customers want foods
that are free of chemicals and preservatives, increasing the
demand for natural antimicrobials to purify food and increase
shelf-life. Many natural chemicals with a broad antibacterial
spectrum against a wide range of microbes can be found in
plants, herbs, and spice extracts [188]. The chemical stability,
kinetics, and mechanisms of action of these natural

antibacterial agents are still unknown, although they also

147

Advanced Carbon Journal, 2026, Vol. x, Iss. x, 135-164

DOI: 10.62184/acj.jacj1000202523

possess antioxidant properties used in some medications.
Environmental factors affect an enzyme's antimicrobial
activity; for example, lysozyme is extremely sensitive to pH
and temperature, which can reduce its effectiveness against
Gram-negative bacteria. Bacteriocins are small molecules
produced by bacteria that inhibit the growth of similar or
closely related strains. Edible films, coatings, and plastic
wraps are directly treated with certain bacteriocins, such as
lacticin, nisin, and EDTA [11]. Other products, such as
pediocin and propionicin, are incorporated into food or
packaging systems to prevent microbial growth. The
bacteriocins produced by live bacteria during food
fermentation are added to food packages as probiotics to
increase their antimicrobial properties. Immobilized
bacteriocins, such as nisin and lacticin, are incorporated into
polyethylene or polyamide pouches to protect against
Lactococcus lactis, Listeria innocua, and Staphylococcus
aureus in refrigerated cheese and ham, thereby extending
shelf-life [189]. In addition to interacting with food, the active
ingredients in packaging help protect the area between the
food and the package [190]. Adding active substances to
natural and synthetic polymers through coating or film
development is a useful method for extending the shelf-life of
food. The physical and mechanical properties of the polymer,
as well as the film thickness, affect the effectiveness of
antimicrobial packaging. Notably, the hue and opacity of
polymers can be altered by the addition of plant extracts [191].
The characteristics of polymers are also altered by the addition
of antimicrobial agents [192]. By altering the polymer
structure, which influences diffusion or initiates direct
interactions with antimicrobials, polymer additives such as
stabilizers, plasticizers, lubricants, and fillers can adversely
affect antimicrobial activity [193]. The chemical composition,
mechanism of action, spectrum of activity, bacterial growth
rate, and physiological conditions of the target
microorganisms are among the variables that affect the
integration of antimicrobial drugs into the polymer matrix.
Particularly important are diffusion kinetics, which dictate the
release of antibacterial chemicals from the polymer [194].

To obtain a PVC antimicrobial material, PVC must be
modified to reduce contamination risk when used in food
packaging. For food packaging, PVC needs to be plasticized

with plasticizers (up to 30%), and palm oil olein, a nontoxic


https://www.sciparkpub.com/article-details/176
https://doi.org/10.62184/acj.jacj1000202523
https://doi.org/10.62184/acj.jacj1000202523

Review Article

edible triglyceride, must be attached to the PVC backbone to
create a suitable antimicrobial film for packaging applications
[195]. Attaching a biocide agent to the surface is one approach
to produce an antimicrobial film [196], as demonstrated by
incorporating antibiotics such as nisin or triclosan into PVC
products [197, 198]. Sodium ampicillin, an antibiotic, was
successfully incorporated into PVC from a DMF solution, and
the resulting film had antibacterial properties against P.
aeruginosa, K. pneumoniae, S. aureus, and E. coli. The DMF
film shows strong antibacterial activity due to the ease of
antibiotic access afforded by its morphology within the PVC
matrix [199]. Additionally, triclosan was incorporated into
PVC [200], and its antibacterial efficacy against S. aureus and
E. coli was examined and compared with that of real PVC
sheets containing silver. The results highlighted the
importance of the hydrophilicity of the PVC surface for
bacterial adhesion. Highly antimicrobial PVC films were
prepared by blending equal parts of PVC and silkworm cocoon
waste (1:1 w/w) and using moringa seed oil as a biobased
plasticizer, with or without silver nanoparticles [199]. Another
plasticizer derived from soybean oil and glycerol, a formal
vegetable oil integrated into PVC, has shown sustainable and
eco-friendly plasticizing properties and considerable
antibacterial efficacy against common infections, including
Staphylococcus aureus and Escherichia coli. The resulting
film was suitable for food packaging purposes [201]. The
effects of nanoclay and an active agent, catechin lysozyme, on
PVC-based film properties were also studied. The microbial
assessment revealed that the composite film had 5. 74 log
CFU/g after 7 days of storing pork meat. For yeasts and molds,
a similar count of 6. A total of 6.82 log CFU/g was observed
on the PVC film.

5. Migration of chemicals into food matrices
from packaging materials

When chemicals such as plasticizers, solvents, and
stabilizers move from packing materials into food, it is referred
to as migration. This can occur because of physical, chemical,
or environmental factors and may affect consumer health and
food safety [202]. Thus, ensuring food safety and fulfilling
regulatory requirements requires an understanding of
migration [203]. Plastic components, inks and coatings,

additives, plasticizers, and antioxidants are examples of
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chemical substances found in packaging materials. Numerous
physical and chemical factors affect the migration of
chemicals from food packaging into food products.
Temperature is a crucial factor; higher temperatures can
accelerate migration by encouraging the chemicals in the
packaging to diffuse into the food. This is especially crucial
for storage and transit under less-than-ideal circumstances.
Various processes, including migration, leaching, and
chemical reactions, can transfer contaminants from packaging
materials to food when the packaging materials come into
direct contact with food. The main mechanisms of migration
include diffusion [204], which is the most common
mechanism; volatilization [205], which occurs when volatile
chemicals in the packaging evaporate; permeation [206],
where small molecules pass through the packaging material
itself;, convection [207], which involves the movement of
chemicals such as gases or liquids in packaging; and chemical
reactions [208] between the food and the packaging materials.
Interestingly, package structural elements, such as
multilayered films, can serve as barriers, restricting chemical
diffusion and lowering migration rates. There is no
relationship between migration and the presence of recycled
substances. International organizations such as the food and
drug administration (FDA) and the European food safety
authority (EFSA) established guidelines for choosing
simulants and testing parameters [209] to ensure that

migration tests accurately represent real-world conditions.
6. Regulations of natural antimicrobials

in the food industry

International regulations strictly regulate food additives
[210], yet nations frequently dispute whether additions are
safe, what amounts are allowed, and what applications are
permitted. For example, only a small number of substances,
primarily organic acids, are now authorized as food
preservatives in Europe. To license food additives for human
consumption, a rigorous procedure is followed. When
requesting approval for a novel additive, an applicant gives
comprehensive scientific safety information, together with a
formal request to the European Commission, the EU's
executive branch. After the application is accepted, the
Commission requests that the European Food Safety Authority
(EFSA) examine whether these substances are safe for use. In
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addition to reviewing current additives with new scientific
data or evolving regulations, the EFSA also assesses the safety
of novel additives before approval [211]. Comparably, in
China, the only industry group with the authority to assess and
assist the Chinese government in regulating food and food
additives is the China Food Additives Association (CFAA)
[212, 213]. In the United States, the Food and Drug
Administration (FDA) evaluates unapproved food additives
for safety before approving them. This evaluation considers
the usual intake, possible immediate and long-term health
consequences, and additional safety considerations. The FDA
has regulatory authority over food additives, as stated in its
Guidelines for Industry. Once approved, the FDA issues
regulations that specify the types of foods it can be used in, the
maximum allowable quantities, and proper labeling, all of
which are outlined in Title 21 of the Code of Federal
Regulations. However, under FDA rules, the Environmental
Protection Agency (EPA) has established guidelines for
pesticide compounds and residues in food. Additionally, the
FDA regulates antimicrobials used in food packaging as food
additives and does not classify them as "pesticide chemicals"
[214].

7. Obstacles and restrictions in the wuse
of natural antimicrobials in the food
industry

The growing customer desire for chemical-free food items
has prompted food firms to use natural substances, as studies
have demonstrated the broad and promising effects of natural
antibacterial agents. Natural antimicrobials have drawbacks
and limitations, including effects on sensory attributes such as
flavor, color, and texture [215]. Since these compounds are
thought to be safer and more ecologically friendly than
synthetic chemical preservatives, regulatory and safety
concerns [216] are receiving increased attention. Although
many natural antimicrobials have received GRAS designation,
regional differences in food safety regulations have caused
inconsistencies in the licensing of specific compounds,
allowable concentrations, and food applications. Certain
natural antimicrobials can cause allergic reactions, adverse
effects, or disrupt gut flora if used excessively or for a long
time. The addition of natural antimicrobials can also alter the

flavor, aroma, and appearance of food. To solve these issues,
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more research is necessary to develop methods for isolating
and purifying natural antimicrobial agents, assessing their
safety, and creating consistent regulatory frameworks for their
safe and effective use. Significant challenges in preserving
antimicrobial efficacy also arise from stability and shelf-life,
as many bioactive substances break down quickly in the
presence of environmental factors such as light, heat, oxygen,
and pH. Due to their volatile nature, essential oils often lose
effectiveness during processing and storage, thereby
decreasing their ability to inhibit microbial growth. Novel
delivery methods have been developed to protect natural
antimicrobials from environmental degradation, preserving
their bioactivity and extending their shelf-life. These methods
edible

microemulsions. Since extracting natural antimicrobials often

include coatings,  nano-encapsulation, and
involves costly, time-consuming, and technically complex
processes, cost and scalability remain major barriers to
widespread use, limiting large-scale industrial production.
Geographical and seasonal variations in the availability of raw
materials make standardization even more difficult and affect
the reliability of the supply and the efficacy of the final
product. In price-sensitive markets, natural antimicrobials are
less viable because of their high production costs. To
overcome these obstacles and promote the commercial
application of natural antimicrobials, cooperation between
academic institutions, industry stakeholders, and regulatory
bodies is essential [39]. A synergistic approach with other
preservation technologies is thought to be advantageous to
prevent adverse effects from high concentrations of these
substances [42]. To enhance the use of these antimicrobials in
food systems without harming the organoleptic properties of
food products, further research on extraction methods,

application strategies, and optimal dosages is necessary [46].

8. Conclusion

Applications for antimicrobial compounds in food,
particularly food packaging, have been around for some time.
These include extending the shelf-life of packaged food and
preventing the growth of germs. The chemical composition,
mechanism of action, range of activity, rate of bacterial
growth, and physiological conditions of the targeted
microorganisms are among the parameters that influence the
incorporation of antimicrobial compounds into the polymer

matrix. The production of natural antimicrobial films involves
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either direct coating or the incorporation of synthetic or natural
antimicrobial agents into the film. Several natural antibacterial
agents, such as essential oils, bacteriocins, lysozymes, organic
acids, chitosan, grapefruit seed extract, AITC, and the primary
flavoring ingredients found in cruciferous plants, date seeds,
and polysaccharides, are integrated into food packaging films.
Although many natural antimicrobial agents have received
GRAS designation, cost and scalability remain important
challenges to increasing their use. Geographical and seasonal
variations in the availability of raw materials make
standardization even more difficult and affect the reliability of
the supply and the efficacy of the final product. In price-
sensitive markets, natural antimicrobials are less viable due to
their high production costs. In this work, we introduced date
seeds as promising, inexpensive, and safe possible prototypes
for creating antimicrobial food packaging films using these
well-known antimicrobial agents. The primary components of

date seeds include fiber, protein, carbohydrates, phenols, and
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metals; these substances have a variety of biological
properties, including antiviral, antibacterial, and antioxidant
properties. Furthermore, dates are used to make a wide range
of goods, including date paste, marmalade, chocolate, sweet
sweets, animal feed, date syrup, alcohol, and several kinds of
bread. In addition to being a good source of oil that is high in
phenolic compounds, tocopherols, phytosterols, date seeds are
also useful for food formulations because of their content of
minerals, fatty acids, beta-carotene, and vitamins C and E.
Thus, the use of fruit byproducts to create antimicrobial films
is a great way to repurpose these residues, utilize their
bioactive chemicals, reduce disposal issues, and support the
circular economy concept. Thus, a natural product that is rich,
valuable, and effective can be used to create biodegradable
films and coatings that have improved functionality and
environmental benefits. However, further research is needed
to enhance formulations, functional qualities, and sensory

acceptance and to determine the GRAS designation.
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Figure 10. (a) Representative chemical structures found in date seeds, (b) a proposed model of a PVC film containing several

oil constituents found in date seeds.

150


https://www.sciparkpub.com/article-details/176
https://doi.org/10.62184/acj.jacj1000202523
https://doi.org/10.62184/acj.jacj1000202523

Review Article

One of the earliest polymers used in food packaging was PVC,
which replaced many traditional materials like glass and
various thermoplastics. Owing to its exceptional
cost/performance ratio, ease of printing, and compatibility
with a variety of additives due to its polar nature, PVC is a
great choice for preserving food freshness and extending shelf-
life. It can also block gases such as oxygen and water vapor.
PVC has worldwide approval for use in food contact
applications, and many PVC/additive blends are already listed
on European incomplete additive lists, including those
outlined in EC Directive 2002/72 and its subsequent
amendments. Blending various extracts with PVC yields
sheets, which are eco-friendly

bioplastic promising

replacements for traditional plastics. Generally, using
plasticizers is essential to make flexible PVC biofilms for food
packaging, and many well-documented PVC plasticizers are
available. Notably, because of the potential presence of
different chemicals and their varying migration rates, Zero
Waste Europe recently advised against using PVC in contact-
sensitive applications like food packaging. However,
removing PVC from packaging will restrict consumer choices
without providing any additional environmental benefits. This
study aims to differ from the general literature by addressing
recent advances that incorporate various natural antimicrobial
agents, which are known to be safe for the food industry, into
the PVC matrix to create effective antimicrobial films and
their application in food packaging. This work provides a
thorough summary of recent studies in antimicrobial food
packaging, with a focus on the application of antimicrobial
agents and PVC-based films. Date seeds are both nutritious
and therapeutic, and making bioactive films from their
byproducts is a promising way to use them and lessen their
disposal issues. A proposed model of a PVC film containing
representative chemical structures, such as phytosterols,
tocotrienols, carotenoids, flavonoids, phenolic acids, and
phytoestrogens contained in date seeds, is shown in Figure 10.
The use of the developed films to inhibit and prevent the
growth of spoilage microbes during conservation and to
extend the shelf-life of stored food will be reported soon.
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