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Abstract

The study's purpose is to look into the bioaccumulation pattern of heavy metals (HMs) in bivalve species taken from Temsah Lake
in Egypt's Ismailia region, as well as the relationship between oxidative stress and metabolic changes. Six heavy metals (HMs):
cadmium (Cd), lead (Pb), manganese (Mn), chromium (Cr), tin (Sn), and mercury (Hg) were evaluated. The bivalve species were
collected from five locations of Temsah Lake during the winter and summer of 2020/2021. The measured heavy metal concentration was
higher in bivalve tissues than in sediments. The bioconcentration factor (BCF) mean values of Cr for the following species: comb circe,
surrclam, grooved carpet shell, and golden venus, respectively, showed great values of 208.28, 224.15, 224.91, and 142.55. These were
followed by Pb (68.46, 49.66, 53.84, and 43.86) and Sn (24.59, 32.51, 23.13, and 64.86) for the aforementioned species. Increases in
carbonyl protein (CP) and malondialdehyde (MDA) were seen in the tested metals.

Keywords: Heavy metals, bioaccumulation, oxidative stress, bivalves, Temsah Lake, Egypt

1. Introduction Born, 1778 (Bivalvia: Veneridae) is economically and
) ) ecologically significant as a source of food and biomass, while
Bivalves are among the seafood that are mostly well-suited . . . .

. o ) also having an impact on communities. It accounts for a major
to nutrition, but they are also high in heavy metals (HMs), which
can be harmful to one's health. A multitude of metabolic

variables influence bivalves' HM intake, putting consumers at

portion of the shellfish market in various coastal countries across
the world [1]. Therefore, their seafood products and commercial

value are stressed. However, consuming them as seafood may be

risk. Bivalves can absorb the majority of metals found in . )
va jority " risky because they are believed to be hyper-accumulators of

industrial waste and urban home pollutants. Molluscs are a . . . .
P HMs and other chemicals [2]. As mentioned earlier, aquatic

diverse category of invertebrates found around the world. . L . . .
invertebrates are inevitably impacted by metal contaminants in

Temsah Lake is home to a variety of clam species, includin . .
Y P & water and sediments, and they can act as biomarkers for

rooved carper shell (Tapes decussatus), comb circe (Gafrarium . .. . . ..
& P (Tap ) (Gaf’ deterioration in water quality. Bioaccumulation in mussels and

ectinatum), golden venus (Venerupis aurea), and surrclam . . .
P ) 8 ( P ) possible harmful metals in the environment could pose health

Paphia undulata). Nevertheless, the bivalve clam P. undulat . .
(Paphia undulata). Nevertheless, the bivalve clam P. undulata risks to the general people [3]. According to the European Water
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Framework Directive, some heavy metals have been categorized
as urgent pollutants because of their high rate of accumulation in
the

consumption of heavy metals (HMs) and their effects on the

living things. Many investigations have examined
majority of edible marine species [4].

Also, several studies have shown that the sediments from a
highly polluted area (HCA) are significantly impacted by trace
element (TE) contamination. Published studies show that
parameters including ingestion rates, gut fluid quality, and
detoxication methods frequently affect how quickly TE builds
up in the digestive gland of Ruditapes decussates [5, 6].
Furthermore, several studies have demonstrated that trace
element (TE) contamination has a major effect on the sediments
from a highly contaminated area (HCA). The pace at which TE
accumulates in the digestive gland of R. decussates is often
influenced by factors such as ingestion rates, gut fluid quality,

and detoxication techniques, according to published research [7].

In food chains, poisonous substances known as heavy metals
(HMs) accumulate at an accelerated rate. They are considered
the most important environmental contaminants due to their
toxicity and tendency to accumulate in marine species [8].
Numerous human activities, such as traffic, smelting, burning
fossil fuels, industrial processes, and some agricultural runoff,
contribute to their creation [9]. Non-essential HMs become
potent poisons, when they bioaccumulate in living things and
produce intoxication [10-12]. Although critical metals can
bioaccumulate to a dangerous amount, they nonetheless serve
typical physiological regulating purposes. Oxidative damage and
metal cytotoxicity have been widely linked [13]. More precise
attention needs to be paid to the biological effects on tissues and
the cellular and/or molecular causes of its toxicity [14].
Numerous metals are known to induce oxidative stress, but
transition metals including iron (Fe) and copper (Cu), O»,”, and
H,0: are especially known to do so because they can create OH
through the Fenton reaction [15]. Other non-transition metal ions
may also be connected to the production of reactive oxygen
species (ROS) and/or reactive nitrogen species (RNS) in
mitochondria. Cadmium (Cd), for example, can generate ROS,
which can impair the mitochondrial electron transport chain [16].
Therefore, one possible effect of ROS is oxidative stress, which
is the breakdown of biological components and tissues. When
the generation of free radicals exceeds the breakdown of those

radicals, it manifests in living organisms [17]. Antioxidant
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enzymes including superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase (CAT) quickly break down ROS.
However, the production of ROS can initiate lipid peroxidation
(LPO), which causes the cell to produce too much
malondialdehyde (MDA) [18]. This synthesis has a rapid
boundary with the biomolecules, leading to different toxicities.
Irreversible protein oxidative modification brought on by
negative stress circumstances can result in the development of
carbonyl protein (CP), which is thought to be the best class of
oxidized/or carbonyl proteins of oxyradicals, with a formation
rate higher than their breakdown [19].

Due to its reversible role in converting pyruvate to lactate, the
enzyme lactate dehydrogenase (LDH) is believed to be a
biomarker for detecting stress conditions [20]. It was found to be
a reliable indicator of tissue injury in invertebrates [21].
Oxidative stress and other metabolic alterations are critical for
evaluating the effects of contaminants on animals in varied
environmental situations [22]. Furthermore, the interactions
between xenobiotics and the components of the antioxidant
system provide a pattern of performance for ecotoxicological
disorders in the organism in relation to its environment [23]. The
novel component of this work is that it investigates the impact of
HMs on organisms using a linear regression model for biological
reactions. There are few comparable discoveries in Egypt. Thus,
the current study seeks to examine the bioaccumulation pattern
of HMs in bivalve species taken from Temsah Lake in relation

to oxidative stress and specific metabolic changes.
2. Materials and methods

2.1. Chemicals and reagents

The following materials were provided by BDH Chemical
Ltd., Poole, England: solvents (ethanol and ethyl acetate), folin
reagent, ethylene diamine tetra-acetic acid, disodium salt
(EDTA), and trichloroacetic acid (TCA). Chemical suppliers
included LOBA Chemie-Jehanjer villa, Mumbai, 400004, India;
other suppliers provided sodium azide, sulfosalicylic acid,
thiobarbituric acid (TBA), and magnesium sulphate (MgSOQOa,
H>0,). Other chemicals supplied by J.T. Baker Chemical Co.,
Phillipsburg, N.J. 08865, included sodium chloride (NaCl),
sodium citrate, sodium hydrogen citrate, phosphate buffer,
sodium phosphate mono and dibasic, sodium carbonate
(Na2COs3), hydroxide (NaOH),
copper sulphate (CuSOs), and acids, hydrochloric (HCI),

sodium-potassium tertrate,
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sulphuric (H>SOs), glacial acetic and nitric (HNOj3). Mumbai,
India-based Oxford Lab Chem provided the guanidine chloride.
Bovine serum albumin (BSA), sodium pyruvate, and several

standards of HMs were acquired from Sigma Chemical.
2.2. Description of the studied region

The examination was carried out at five separate Temsah
Lake locations. This lake is located 80 km south of Port Said in
the middle of the Suez Canal and has an area of roughly 15
square kilometres between 32° 17'30"; 32° 18' 30" E latitude and
30°32'30"; 30° 40' 30" N longitude. Figure 1 depicts a selection
of sampling locations, with the site (5) chosen as a reference due
to its distance from the source of contamination, and the other
four sites (1-4) labelled as polluted regions. Furthermore,
inhabitants are employed in the tourism and fishing businesses,
which constitute a large amount of the region's income [24]. The
lake receives high salinity water from the Suez Canal [25]. It
receives freshwater from the Ismailia Canal, El-Forsan Drain,
Al-Mahasama Drain, and Abu Jamous Drain through the western
lagoon [26]. The dredging activities of the Suez Canal led to the
demolition of fisheries [27]. The dramatic increase of human

activities in recent years near the lake, such as shipping and
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servicing, municipal wastewater damping off, and agricultural
drainage loading into the lake, has greatly accelerated the lake's
depletion and pollution state [28].

2.3. Sample collection and preparation

Bivalve samples were obtained from the investigation sites
during the winter and summer of 2020 and 2021. Every type of
sample was placed in a plastic bag, labeled, and transported to
the laboratory in an icebox for analysis. Sediment samples were
collected at a 5 cm distance from the ground surface using auger
equipment. The water was then removed from the equipment,
placed in a plastic bag with a label, and delivered to the
laboratory for analysis. Before usage, the samples were air-dried

in a dark room for 72 hours.
2.3.1. Soft tissues

The following freshwater bivalve species were gathered
from five sites during the above-described periods: grooved
carper shell (7. decussatus), comb circe (G. pectinatum), golden
venus (V. aurea), and surrclam (P. undulata). After being
dissected to harvest soft tissue, they were packaged, labeled, and
kept at -20 “C until needed.

32°17'30"E 32°18°E

30°33'30"N

32°17'30"E

Legend

@® Samples sites

Figure 1. Google map demonstrating sampling sites of Temsah Lake.
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2.4. Determination of heavy metals (HMs)
2.4.1. In sediment

The Olowu et al. technique [29] was used to measure the
amounts of HMs. An orbital shaker was used to agitate an aliquot
of dried material (5 g, each) for 30 min after it was dispersed
with 50 ml of 0.1M HCl into a 150 ml conical flask. The extract
was then filtered, added 0.1M HCI to make it up to a volume of
50 ml, and used to test HMs.

2.4.2. In soft tissues

A mixture of 1 g of dried material and 10 ml of HNOs:
H,SO;4 (at a ratio of 4:1 v/v) was prepared. Using a magnetic
agitator and reflux condenser, the mixture was brought to a boil
on a hot plate for one hour. The sample was chilled, and then
heated once more after adding 10 milliliters of HCIl. To
determine HMs, it was diluted to an impressive level with
deionized water and then reduced to a constant volume of 5 ml.
This was done using an instrument, Inductive Coupled Plasma-
Optical Emission Spectroscopy (ICP-OES) [30].

2.5. ICP-OES

ICP-OES was used to measure a variety of metals, including
chromium (Cr), manganese (Mn), lead (Pb), and cadmium. All
measurements were done with the Agilent 4200 MP-AES
microwave plasma model. An auto-sampler was used to deliver
the sample (3 replicates) to the double-pass cyclonic Agilent SPS
3 instrument's cyclonic spray chamber, which was filled with
mass flow-controlled nebulizer part (0.60 L/min). The system
supported cooled CCD detection and operated in a fast-
sequential mode with a solution time of 30 s and an equilibrium
time of 15 s. Background and spectrum interference might be
precisely and easily managed using Agilent's MP Expert
Software.

The amounts of tin (Sn) and mercury (Hg) were measured using
ICP-MS/MS (8900 Triple Quadrupole ICP-MS method). The
apparatus was run in three modes: SQ-KED, SQ-CP-NH3 (cold
plasma with NHj3 reaction gas), and TQ using pure oxygen (TQ-
0,). The high sensitive PFA double-pass spray chamber was
employed, with the nebulizer part set to 10 pul/min. The apparatus
was set up for triple quad mode, with a forward power of 1550
W, nebulizer part of 0.999 ml/min, and CRC gas of 0.3 ml/min,
with dwell periods ranging from 100 to 300 ms per metal.

For blank response, the limits of detection (LODs) for these

metals were determined as two times the standard deviation over
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a range of solution quantities [31]. To ensure the reliability of
the findings, working standards, quality assurance processes, and
safety precautions were implemented. To avoid contamination,
deionized water was used, and samples were handled with
considerable caution. The techniques were followed as
previously described, and a recovery experiment was authorized

by spiking the blank with 50 and 100 ppm of the metal's standard.
2.6. Bioconcentration factor (BCF)

Bioconcentration factor (BCF) was estimated as a ratio
between metal concentration in the tissue (C,), with respect to its
concentration in the surrounding media (Cmed) as shown in
equation (1) [32]:

ct

BCF = Cmed

0y
2.7. Biochemical quantifications

2.7.1. Preparation of the tissues

Each tissue sample weighed half g and the samples were
mechanically homogenized for 15 s with an ice-cold saline
solution (ratio 1:10 w/v). The extract was centrifuged for 20 min
at 5000 rpm. The supernatant was utilized as a source for the
measurement of other enzymes, the homogenate was utilized as
a source for LPO and LDH.

2.7.2. Lipid peroxidation (LPO)

The spectrophotometric determination of MDA level was
approved with the guidance of thiobarbituric acid reactive
compounds (TBARS) [33]. In summary, 0.25 mL of tissue
homogenate was added to a test tube containing two mL of
0.37% (w/v) thiobarbituric acid (TBA) and one mL of 15% (w/v)
trichloroacetic acid (TCA) in 25 mM of HCI. After being heated
to 100 °C for ten minutes, it was quickly cooled and centrifuged
at 5000 rpm for five minutes. At 535 nm, a spectrophotometric
determination was made. The MDA level was approximated as

mM/g of tissue using an extinction value of 156 mM'.
2.7.3. Catalase (CAT)

Following the decrease in absorbance at 240 nm, which was
attributed to the depletion of hydrogen peroxide (H,O»), the
activity of CAT was measured [34]. An aliquot of the enzyme
source was introduced to the cuvette along with 1 ml of 12.5 mM
H»0, (substrate) and 2 ml of 66.7 mM phosphate buffer (pH 7.0).
In U/mg protein, the enzyme activity was measured. The
quantity of enzyme that releases half of the peroxide oxygen
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from the H»O, solution in 100 pl at 25 degrees Celsius,
regardless of concentration, is the unit of CAT.

2.7.4. Glutathione peroxidase (GPx)

Using a cuvette containing phosphate buffer solution (100
mM), EDTA (50 mM), sodium azide (250 mM), H>O (10 mM),
and enzyme, the activity of GPx was measured using the Flohe
and Gunzler [35] technique. For 40 s, the absorbance at 340 nm
was recorded every 3 s. The activity was calculated as mU
GPx/mg protein. The quantity of enzyme required to oxidize 1
pM of B-nicotinamide adenine dinucleotide-reduced form (j3-

NADPH) per minute is known as one unit of GPx.
2.7.5. Carbonyl protein (CP)

Tissue samples that had been frozen were weighed, ground
in ice-cold sulfosalicylic acid (5%) at a ratio of 1:20 w/v, and
centrifuged for 15 min at 13,000 rpm. The sample pellets were
combined with 0.5 of 2, 4-
dinitrophenylhydrazine (10 mM) and vigorously vortexed for

ml of a solution
one hour at room temperature. After thoroughly mixing the same
amount of TCA (20% w/v), the samples were centrifuged as
previously mentioned. The excess 2, 4-dinitrophenylhydrazine
was eluted three times using ethanol: ethyl acetate (1:1 v/v) (1
ml each time), which was recorded using a strong vortex and
centrifuging again as previously mentioned. After being
suspended in 6 M guanidine chloride, the final pellets were

incubated for 15 min at 37 °C [36].
2.7.6. LDH

The enzyme activity in tissue homogenate was quantified
according to method of McComb [37]. Also, sodium pyruvate
was used as a substrate and the activity was estimated as U/L.

2.7.7. AST/ALT

Aliquots of the supernatant were used to assess AST and
ALT activities by using specific kits. The enzyme activity was
estimated as U/L [38].

2.7.8. Total Protein content

Protein content was quantified according to method of
Lowry et al. [39] and bovine serum albumin (BSA) was used as
a standard.

2.8. Statistical analysis

ANOVA, or analysis of variance, was employed to compare
treatment means. The Student-Newman-Keuls test [40] was used

to compare the least square means in order to identify any
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significant changes between treatments. In order to perform
principal component analysis (PCA), multi-linear regression
between HMs

accomplished [41]. The appropriate analysis was carried out

levels and physiological variables was

using the Costat programme [42].
3. Results

3.1. Bioaccumulation of HMs

Table 1 displays the modified quantified levels of HMs at
100% recovery. Sn (2.50 mg/kg) and Mn (1.00 mg/kg) were the
mean values, while Hg contents in sediment samples ranged
[below the detection limit (BDL)-41.18 mg/kg] (mean, 8.99
mg/kg) during the summer. The metal Pb had the lowest average
value (0.79 mg/kg). Throughout the winter, all tested HMs had
greater values than in the summer. Table 2 shows the mean
values for Mn, Cr, Cd, Pb, Hg, and Sn, which were calculated to
be 15.20, 16.52, 17.79, 18.35, 16.41, and 16.85 mg/kg,
respectively. Nonetheless, the measured HMs the
aforementioned regional standards of 8.10, 8.72, 9.30, 9.57,
12.70, and 9.68 mg/kg for HMs.

met

All HMs measured in bivalve tissues had greater regional mean
(Table 3). Pb
concentrations in the collected species of Comb circle, Surrclam,

values than those found in sediments
Grooved carpet shell, and Golden venus were exceptional, with
mean values of 180.66,223.09,201.11, and 201.02 mg/kg. These
were followed by Sn (164.42, 179.64, 228.49, and 286.22
mg/kg) and Cr (194.84, 208.91, 209.29, and 135.03 mg/kg) for
the aforementioned species. The levels of Hg were 130.55,
53.19,96.04, and 41.89 mg/kg, whereas the Mn bioaccumulation
patterns for the aforementioned species were 53.31, 54.09,
50.80, and 51.98 mg/kg. They had low mean Cd values of 3.48,
3.64, 3.15, and 4.22 mg/kg, respectively. Table (3) shows the
estimated bioconcentration factor (BCF) of the observed HMs as
aratio of tissue concentration to media concentration (sediment).
For the species Comb circe, Surrclam, Grooved carpet shell, and
Golden venus, the BCF of Cr was 208.28, 224.15, 22491, and
142.55, respectively. Pb (68.46, 49.66, 53.84, and 43.86) and Sn
(24.59, 32.51, 23.13, and 64.86) had high levels for the same
species. In the Comb Circle, Hg had the greatest BCF (10.28),
followed by Grooved Carpet Shell (7.55) and Surrclam (4.19), in
that order. Mn's BCF pattern was 11.81, 7.98, 7.52, and 6.96 for
the following species: Golden Venus, Surrclam, Comb Circe,

and Grooved Carpet Shell, in that order.
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Table 1. Recovery percentages and limits of detection (LODs) of HMs in bivalves and sediments collected from Temsah Lake.

Recovery
Metal (%) Lob
Tissue Sediments (Ppb)
Pb 95.6 100.0 10
Cr 94.4 87.7 300
Cd 95.4 90.2 700
Mn 95.0 89.7 650
Sn 100.0 100.0 0.01
Hg 98.0 93.0 0.01
Table 2. Concentrations of HMs (mg/kg) in sediment samples collected from Temsah Lake.
C.Vv
Metal Range Mean R. Mean
(%)
-Summer season

Mn ("BDL-4.24) 1.00 52.56

Cr (BDL-4.08) 0.92 52.47

Cd (BDL-3.40) 0.80 52.45

Pb (BDL-3.60) 0.79 52.39

Hg (BDL-41.18) 8.99 52.51

Sn (BDL-8.36) 2.50 37.45

-Winter season

Mn (BDL-53.33) 15.20 52.58 8.10

Cr (BDL-61.22) 16.52 51.71 8.72

Cd (BDL-61.78) 17.79 39.49 9.30

Pb (BDL-62.12) 18.35 52.67 9.57

Hg (BDL-63.31) 16.41 48.79 12.70

Sn (BDL-60.35) 16.85 48.83 9.68

-"BDL= Below Detection Limits, R. mean= regional mean, and C.V.%= Coefficient of variation percent.
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3.2. Biochemical responses

The enzyme activity of each species of trapped bivalve was
assessed. It was revealed that bivalves' tissue homogenate
contained exceptionally low amounts of MDA. Table 4 reveals
that the seasonal average values did not exceed 0.02 mM/g
tissue. Throughout the research periods, no obvious variation
was seen among the bivalve species (Table 5).

The sequence of events below represented the CAT activity in
tissue homogenate: The Grooved Carpet Shell, Golden Venus,
and Comb Circe had mean protein concentrations of 60.35,
13.74, 10.99, and 4.76 U/mg (Table 5). In contrast, Table 6
reveals that the activity in samples taken from the sites was
4241, 24.86, 19.01, 15.24, and 10.78 U/mg protein for sites 4,
1, 3, 2, and 5. Winter enzyme activity was higher than summer
activity (see Table 4). The GPx enzyme was active in the
homogenate of bivalve tissue in the order shown below. The
grooved carpet shell, comb circle, golden venus, and surrclam
had mean protein concentrations of 0.04, 0.03, and 0.02 mU/mg,

respectively.

The CP levels in the bivalve tissue homogenate were determined
in the following order: Mean values of 0.22, 0.20, 0.14, and 0.14
mM/g tissue were found in the olden venus, grooved carpet shell,
surrclam, and comb circles, respectively. Protein levels in
samples obtained from locations 2, 4, 1, 3, and 5 were 0.21, 0.19,
0.18, 0.16, and 0.14 mM/g tissue, respectively. Wintertime saw
the highest amount (0.35 mM/g tissue).

The sequence of events below describes the LDH enzyme
activity in tissue homogenate: The average values for Comb
Circle, Grooved Carpet Shell, Surrclam, and Golden Venus are
1301.43, 114.47, 50.31, and 49.84 U/L, respectively. The mean
enzyme activity values in the samples collected from the
locations were 1524.50, 152.17, 121.90, 51.68, and 44.81 U/Lin

for sites 3, 1, 2, 4, and 5. The summertime mean value (576.69
U/L) was higher than the wintertime mean value (181.33 U/L).

The following order could be applied to the ALT activity in
bivalve tissue homogenate: The mean values of Comb Circle,
Surrclam, Grooved Carpet Shell, and Golden Venus were 36.39,
35.07, 34.45, and 33.88 U/L, in that order. On the other hand,
mean values of 37.50, 35.34, 35.27, 33.43, and 33.21 U/L were
detected in the activities in samples that were taken from sites 1,
3,4, 2, and 5, respectively. However, the AST activity showed
the following order: 14.22, 18.21, 17.59, and 21.60 U/L for the
mean values of Golden Venus, Surrclam, Grooved Carpet Shell,
and Comb Circle, in that order. But in sites 4, 3, 1, 2, and 5, the
activity in samples taken from the locations was discovered to
have mean values of 23.43, 17.03, 16.81, 16.44, and 15.82 U/L,

respectively.
3.3. Correlation analysis

A noteworthy (P<0.05) inverse relationship was discovered
between the concentrations of HMs and ALT activity, except for
Mn and Hg, which showed positive correlations with Pearson's
correlation coefficients of 0.73 and 0.81, respectively. The
enzyme AST was shown to have positive relationships (r=0.87
and 0.82) with the Cd and Sn concentrations. Significant positive
correlations were seen between LDH activity and Mn and Hg
concentrations (r=0.96 and 0.97%), whereas negative
correlations were observed for other HMs. The CP level and the
amounts of Cd, Pb, and Sn showed a marginally positive
connection (r=0.26, 0.05, and 0.44, respectively). The
concentrations of HMs were negatively correlated with the level
of MDA, the activities of CAT, and GPx, with the exception of
Pb, which showed positive correlations with the concentrations,
imposing r values of 0.86, 0.82, and 0.85, respectively (Figure
2).

Table 4. Seasonal mean values of enzyme activities in four bivalve species collected from five sites of Temsah Lake.

g ALT AST LDH CpP MDA CAT GPx
easons
(U/L) (U/L) (U/L) (mM/g tissue) (mM/g tissue) (U/mg protein) (mU/mg protein)
57.53 28.06 576.69 0.003 0.010 4.50 0.030
Summer
+3.87 +4.21 +14.28 +0.001 +0.001 +1.07 +0.003
. 12.37 7.75 181.33 0.350 0.020 40.42 0.020
Winter
+0.78 +1.65 +107.17 +0.053 +0.003 +31.88 +0.015
LSD (5%) 17.79 8.00 155.71 0.14 0.00 14.15 0.00



https://www.sciparkpub.com/article-details/125
https://www.sciparkpub.com/article-details/125
https://doi.org/10.62184/jafs.jafs1000202512

Research Article

Journal of Agrochemicals and Food Safety, 2025, Vol. 1, Iss. 1, 10-28

DOI: 10.62184/jafs.jafs1000202512

Table 5. The enzyme activities in four species of bivalves collected from Temsah Lake.

Soeci ALT AST LDH cp MDA CAT GPx
ecies
P (U/L) (U/L) (U/L) (mM/g tissue) (mM/g tissue) (mM/g tissue) (mU/mg protein)
36.39" 14.22 1301.43 0.14 0.01 10.99 0.03
Comb circe
+8.23 +4.15 +202.79 +0.06 +0.003 +2.64 +0.005
33.88 18.21 50.31 0.14 0.01 4.76 0.02
Surrclam
+8.06 +3.84 +15.43 +0.06 +0.003 +0.80 +0.005
Grooved carpet 34.45 17.59 114.47 0.20 0.01 60.35 0.04
shell +7.00 +2.87 +95.96 +0.07 +0.003 +44.31 +0.019
35.07 21.60 49.84 0.22 0.01 13.74 0.02
Golden venus
+8.41 +6.75 +14.93 +0.07 +0.002 +4.76 +0.005
LSDse, 0.60 1.68 342.94 0.02 0.00 14.22 0.01

-* Each value represents the mean of three replicates+SE.

F2 (35.27 %)

1.5

tipid Peroxidase

Biplot (axes F1 and F2: 85.79 %)

Obs3

CAT

Carbonyl Protien

0.5
AST
o | /’ | |
-1.5 1.5
cd
05 S
s Obs4
MOH
-1 . ALT
Obsl
1.5 -

F1 (50.52 %)

® Active variables  # Active observations

Figure 2. Correlation pattern of HMs levels in bivalves and some biochemical variables.

variables and HMs obtained after Pearson's test (P<0.05).
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Linear correlation between the
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4. Discussion

The present work focused on HMs impact on four species of
bivalves commonly distributed in Ismailia ecosystem in
association with oxidative stress and other biochemical
alterations.

4.1. Accumulation

A significant (P<0.05) negative connection was discovered.
Polycyclic aromatic hydrocarbons (PAHs) and some potentially
harmful metals are the main causes of pollution in maritime
coastal habitats because of shipping and oil exploitation
activities. Because of their ability to filter water, beavers are
regarded as hyper-accumulators of contaminants and are seen as
bio-pointers of contamination. As is known, for the past few
decades, marine invertebrates such as bivalve mollusks have
frequently been evaluated as sentinel models for ecosystem
contaminants linked to their creation of ROS [43-45].

The current study investigated the accumulation of HMs in a
large ecosystem model and discovered negative outcomes
related to HM levels. Several risk factors, including rapid
population increased

growth, increased development,

manufacturing, consideration and corruption of natural
resources, factors such as irrigation expansion, the spread of
other modern agricultural practices, and a lack of environmental
regulations, may be to blame for the elevated rate of heavy metal
pollution. Furthermore, owing to the industrial zone in Ismailia
City and shipping traffic in the Suez Canal, HMs may be released
into the Lake in large quantities. According to Abd El-Azim et
al. [46] and Nasr et al. [47], the western lagoon on Temsah Lake
is the principal source of pollution, discharging large amounts of

sewage, agricultural effluents, and industrial waste.

Pollution's impact on aquatic systems has received global
attention [48]. Likewise, some parameters, including pH and
temperature, may alter HM ingestion, dispersion, and potential
detrimental effects in ecosystems [49]. As a result, high
concentrations of these metals can have unanticipated ecological
consequences on the biota, potentially reducing fertility and/or
interfering with reproduction [50]. Furthermore, HMs can affect
biochemical and physiological processes in aquatic species'
blood and tissues [51]. Pollutant processes and pathways from
one trophic level to the next are explained by HM
bioaccumulation and/or bio-magnification in organisms. HMs

can infiltrate the food chain when ingested directly in water.
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Figure 2 shows that the bioaccumulation patterns of HMs in
mollusc tissues are significantly higher than those in sediments.
According to Lau et al.'s study [53], the HMs As, Cu, Fe, Se, and
Zn accumulated in the tissues of Brotiacostula, Melanoides
tuberculata, and Clithonsp at higher levels than in the sediments,
which is consistent with the profile presented here. Furthermore,
the current findings are consistent with those obtained by Abd El-
Azim et al. [54], who found that high levels of bioaccumulation
factor (BAF) of Mn, Cd, and Cr are suitable bio-indicators for
monitoring pollution in Bitter Lakes for fish species. Mn, Cd, Cr,
Cu, and Pb were shown to accumulate in the soft tissues of
Pomadasys. Numerous characteristics, including feeding habits,
development rate, age, and metal bioavailability, have been
associated with HM bioaccumulation in aquatic species [55, 56].
Certain molluscs living in sediments can acquire more HMs than
those dwelling on the surface of rocks or algal diatoms. Water-
dwelling organisms with a rapid growth rate accumulate HMs in
their tissues at a lesser rate. This pattern may be connected with a
rise in the weight of the tissue and shell, which occurs quicker than
the accumulation process. El-Sawy et al. [57] documented this
idea, with total quantities of arsenic (As), sulphur (Sn), mercury
(Hg), and selenium (Se) in the sediment compartment of Bitter
Lakes in 2018 being 22400.0, 605.85, 40.91, and 446.55 ng/g,
respectively. Despite efforts to reduce their discharge, potentially
hazardous metals continue to pose a significant threat to
ecosystems. Numerous potential toxic metals are currently on the
list of urgent elements contaminating surface waters, while alarms
are triggered by the rising usage of technology-critical metals such
as metallic nanoparticles (NPs), rare-earth, and platinum group
metals. [58]

The recent findings of HM accumulation levels in bivalves' tissues
were found to be higher than the limitations set by international
authorities. For example, the established Mexican and international
regulations (in wet weight) are as follows: As (80 mg/kg) [61], Hg
(1.0 mg/kg) [61], Pb (1.0 mg/kg) [61], Cd (0.5 mg/kg) [61], Cu
(35.5 mg/kg) [59], Cr (13.0 mg/kg) [60], and nickel (Ni) (80
mg/kg) [60] are listed in that order. In contrast, the bivalve
Cerastoder maglaucum from Temsah Lake shows accumulation
levels of Mn, Ni, Fe, and Cr that exceed the WHO's recommended
limits [62]. The Malaysian Food Regulations (1985) [63] are
arranged in the following order (in dry weight): Cd (1.0 mg/kg),
Cu (30 mg/kg), Pb (2.0 mg/kg).
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It has been reported that HMs and metalloids cause cellular
disruption, particularly by inducing oxidative stress independent
of ROS initiation, damaging DNA and impairing its repair
mechanism, delaying normal cell membrane function and
nutrient adaptation, and inducing protein breakdown [64—-65].
Furthermore, it is widely acknowledged that the majority of
metals generate covalent bonds that disturb the normal functions
of several organ systems [66]. For example, Pb has been
associated with cancer and non-cancer hazards that exceed one
EPA unit. As described in the literature, Pb poisoning in humans
can result in arthritis, hypertension, brain and kidney damage,
and muscle weakness. Furthermore, it may cause birth defects
and mental retardation, especially in susceptible populations

such as children and expectant mothers [67].

Based on this present research, Mn may be released via
fertilization procedures, metal mining, agricultural runoff, and a
range of household wastes produced in the Ismailia governorate.
Although excessive exposure can result in tumors, hypotension,
central nervous system disruption, and changes in fetal
development, it is nevertheless recognized as a vital enzyme
activator [68]. Such findings found that Mn levels in all studied
bivalves were above EPA regulatory guidelines, implying that
taking Mn often over an extended tolerance may pose health
risks. Similarly, as previously stated, consuming bivalve species
such as Pacific oysters and marsh clams may raise your chance
of developing metal poisoning from As, Cu, Pb, Zn, and Hg, as
evidenced by different Total Hazard Index (THI) values [69].

Low levels of Hg can harm to adult or fetal neurological system.
Furthermore, exposed persons have effects on their immune,
cardiovascular, reproductive, and renal systems [70]. According
to recent results, the potential detrimental effects of low Pb doses
and environmental contamination should be explored. Only a
few countries run awareness programs, and they are occasionally
successful. Administrators of relevant nations should witness the
absence of Hg from food and the environment by creating
rigorous norms for industrial sectors that pollute, validating
correct handling of Hg waste, and promising not to undertake
any Hg-related acts. Due to current findings about the adverse
impact of such pollution in this study, the lake's water quality has
an impact on the critical role of the Suez Canal as a key waterway
for species movement [71]. In this regard, clams are consumed
locally in Egypt, and their population has declined due to
overexploitation, pollution, and parasites [72—74].
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4.2. Biochemical responses

The findings obtained indicate that a potential hazardous
technique to evaluate the biological impact and danger of HMs
may be feasible. Even in the lack of local species, employing
marine bivalves as antioxidant enzymes could be a reliable and
straightforward solution to improve existing monitoring
methods. The biological relevance of the findings is especially
significant, given the HMs that have accumulated and the

toxicological reactions to them.

When compared with another reference site (site 5), the results
revealed that the observed HMs discharged into Temsah Lake
could produce oxidative stress in samples collected from
polluted locations. Most studies on aquatic species focused on
oxyradicals (H20, the element O+ , and OH ) as the key ROS
sources. The presence of a wide range of xenobiotics, both
natural and synthetic, can boost ROS production. Persistent
organic pollutants (POPs) and HMs are two potential causes of
elevated ROS and other pro-oxidant free radicals [75, 76]. In the
current study, ROS were found to cause an intracellular excess
of MDA in molluscs collected from all sites but the reference
site. Formation of MDA in cellular membranes disrupts normal
metabolism, triggering an adaptive response that eventually
leads to cell death [77]. According to studies, various stresses
resulted in higher MDA levels in mussel species [78—81]. El-
Saidy et al. [62] found that the accumulation of Cu, Cr, and Fe
in C. glaucum tissues in Temsah Lake correlated positively with
MDA levels and negatively with CAT activities. Hossain et al.
[3] found that Pb exposure had a significant impact on the
physical health of the freshwater pearl mussel, Lamellidens
marginalis. Furthermore, the persistent influence resulted in

moderate to severe modifications in internal cellular structure.

However, during H»>O, detoxication, CAT and GPx have
complementary functions. When tissue homogenates from all
sites were compared to the reference site, the animals in the
present investigation showed increased CAT activity. As
previously stated by Hermes-Lima [82], these increases are
produced by ROS regulation. The majority of seasons saw a
decline in GPx activity in animals collected from polluted
locations of the Lake. Previous studies discovered that various
pollutants in coastal areas, marine ecosystems, and freshwater
influenced the oxidative stress of many mollusc species. This

was found with mussels, notably Mytilus galloprovincialis [83],
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Perna perna [84], Ruditapes philippinarum [85], and freshwater
mussels [86].

The cytotoxic effects of HMs were determined by measuring
LDH in the tissue homogenate of animals collected during the
study period. Positive LDH activity was detected in all infected
tissues. Elevated LDH release can also be used to detect cellular
and membrane damage [87].

Furthermore, all mollusk species had noticeably larger excesses
of MDA and LDH in the chosen snail. This profile reveals a
probable relationship between HM toxicity, accumulation, and
oxidative damage. Previous studies in contaminated locations
found higher MDA levels and CAT activity in the digestive
gland when compared to reference organs such as mussels
Mytella guyanensis [88], snails Theba pisana [89], and Helix
aspersa [90].

The quantification of CP generation in this work provides a
metric of protein oxidation in molluscs collected to investigate
HM bioaccumulation. The collected data revealed that the
majority of the animals obtained from the sites had CP.
Additionally, the study found that extended exposure to HMs

could cause considerable amounts of irreversible change, such as

protein carbonylation. McDonagh et al. [91] have already stated
this concept. Furthermore, when compared to other seasons,
winter was the most contaminated due to HMs, which increased
CP induction. In contrast, CP levels in bivalve samples from
contaminated sites were greater than in the reference zone. This
finding is consistent with previous studies that used proteomics
to assess tissue-specific CP generation caused by environmental
pollutants such as POPs and HMs [92, 93]. Prior studies have
shown that exposure to oil [94] or PAHs [95, 96] raises levels of
CP. Significant quantities of CP were identified in the digestive
gland tissues of PAH-exposed gastropods [97]. According to
Abdel-Halim et al. [98], the land snail, H. aspersa, in Egypt's
Kafr El-Zayat region was affected by inhaling contaminated air
containing industrial emissions, which resulted in a significant
induction of CP in the digestive gland, notably in groups near
brick and pesticide businesses. The results gathered are
consistent with the findings of Gupta et al. [99], who found a link
between the development of CP content and ROS generation and
the up-regulation of the letter in organisms exposed to
environmental toxicants, implying that ROS plays a role in

induction protein modification.

Table 6. Regional mean values of enzyme activities in four bivalve species collected from Temsah Lake.

CAT GPx
. ALT AST LDH CP MDA
Location . K (U/mg (mU/mg
(U/L) (U/L) (U/L) (mM/g tissue) | (mM/g tissue) . .
protein) protein)
Site 1 37.50 16.81 152.17 0.16 0.01 24.86 0.02
ite
+8.78* +3.71 +107.95 +0.06 +0.003 +17.21 +0.005
Site 2 33.21 16.44 121.90 0.21 0.01 10.78 0.02
ite
+8.11 +3.33 +107.50 +0.07 +0.003 +3.10 +0.006
Site 3 35.34 17.03 1524.50 0.14 0.01 19.01 0.02
ite
+7.84 +3.34 +225.74 +0.05 +0.003 +11.32 +0.004
Site 4 33.43 23.43 4481 0.18 0.01 42.41 0.04
ite
+8.13 +7.70 +13.50 +0.07 +0.002 +47.54 +0.021
35.27 15.82 51.68 0.19 0.01 15.24 0.03
Site 5**
+8.01 +3.54 +19.22 +0.07 +0.003 + 05.65 +0.007
LSD5% 0.97 1.74 357.58 0.02 0.00 6.85 0.01

*Each value represents the mean of three replicates+SE.

**Site 5 was considered as a reference zone
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5. Conclusion

The current study found that aquatic HM pollution caused
silt from Temsah Lake (Ismailia, Egypt) to bioaccumulate in the
bivalves' tissues. This buildup induced oxidative stress and
metabolic alterations in the organisms, affecting the dangers to
local consumers (Ismailia residents). Given this, precautions
must be taken to avoid further HM contamination. Furthermore,
it improves baseline data and health risk assessments for these
contaminants in commonly consumed bivalves in the Ismailia
region. These findings provide significant information about the

safety of routinely ingested bivalves.
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